ADVANCED COMMUNICATIONS

Description

The ACS8509 is a highly integrated, single-chip solution for the Synchronous Equipment Timing Source (SETS) function in a SONET or SDH Network Element. The device generates SONET or SDH Equipment Clocks (SEC) and Frame Synchronization clocks. The ACS8509 is fully compliant with the required international specifications and standards.

The device supports Free-run, Locked and Holdover modes. It also supports all three types of reference clock source: recovered line clock, PDH network, and node synchronization. The ACS8509 generates independent SEC and BITS/SSU clocks, an 8 kHz Frame Synchronization clock and a 2 kHz Multi-Frame Synchronization clock.
Two ACS8509 devices can be used together in a Master/ Slave configuration mode allowing system protection against a single ACS8509 failure.
A microprocessor port is incorporated, providing access to the configuration and status registers for device setup and monitoring.
The ACS8509 includes a choice of edge alignment for 8 kHz input, as well as a low jitter $\mathrm{n} \times$ E1/DS1 output mode. The User can choose between OCXO or TCXO to define the Stratum and/or Holdover performance required.

Block Diagram

Features

- Suitable for Stratum 3E*, 3, 4E, 4 and SONET Minimum Clock (SMC) or SONET/SDH Equipment Clock (SEC) applications
- Meets AT\&T, ITU-T, ETSI and Telcordia specifications
- Accepts four individual input reference clocks
- Generates six output clocks
- Supports Free-run, Locked and Holdover modes of operation
- Robust input clock source quality monitoring on all inputs
- Automatic "hit-less" source switchover on loss of input
- Phase build-out for output clock phase continuity during input switchover and mode transitions
- Microprocessor interface - Intel, Motorola, Serial, Multiplexed, EPROM
- Programmable wander and jitter tracking attenuation 0.1 Hz to 20 Hz
- Support for Master/Slave device configuration alignment and hot/standby redundancy
- IEEE 1149.1 JTAG Boundary Scan
- Single +3.3 V operation, $+5 \mathrm{~V} \mathrm{I} / 0$ compatible
- Operating temperature (ambient) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Available in 100 pin LQFP package.
- Lead (Pb)-free version available (ACS8509T), RoHS and WEEE compliant.
Note... * Meets holdover requirements, lowest bandwidth 0.1 Hz .

Figure 1 Block Diagram of the ACS8509 SETS

Table of Contents

Section Page
Description 1
Block Diagram 1
Features 1
Table of Contents 2
Pin Diagram 4
Pin Description 5
Functional Description 8
Local Oscillator Clock 8
Crystal Frequency Calibration 8
Input Interfaces 9
Over-Voltage Protection 9
Input Reference Clock Ports 9
DivN Examples 10
Input Wander and Jitter Tolerance 10
Frame Sync and Multi-Frame Sync Clocks (Part of Touto) 12
Output Clock Ports 12
Low-speed Output Clock (Tout4) 12
High-speed Output Clock (Part of Touto) 12
Low Jitter Multiple E1/DS1 Outputs 13
Output Wander and Jitter 13
Phase Variation 14
Phase Build-Out 17
Microprocessor Interface 17
Motorola Mode 17
Intel Mode 17
Multiplexed Mode 17
Serial Mode 17
EPROM Mode 17
Register Set 18
Configuration Registers 18
Status Registers 18
Register Access 18
Interrupt Enable and Clear 18
Register Map 18
Register Map Description 23
Selection of Input Reference Clock Source. 36
Forced Control Selection. 36
Automatic Control Selection 36
Ultra Fast Switching 37
Clock Quality Monitoring 37
Activity Monitoring. 38
Frequency Monitoring 39
Modes of Operation 39
Free-run mode 39
Pre-Locked mode 39
Locked mode 39
Lost_Phase mode 40
Holdover mode 40
Pre-Locked(2) mode 41
ADVANCED COMMUNICATIONSFINAL
DATASHEET
SectionPage
Protection Facility 41
Alignment of Priority Tables in Master and Slave ACS8509 42
Alignment of the Selection of Reference Sources for TOUT4 Generation in the Master and Slave ACS8509 42
Alignment of the Phases of the 8 kHz and 2 kHz Clocks in both Master and Slave ACS8509 42
JTAG 43
PORB 43
Electrical Specification 45
Operating Conditions 45
DC Characteristics 45
Notes for Tables 24 to 30 51
Input/Output Timing 52
Motorola Mode 53
Intel Mode 55
Multiplexed Mode 57
Serial Mode 59
EPROM Mode 61
Package Information 62
Thermal Conditions 63
Application Information 64
References 65
Abbreviations 65
Trademark Acknowledgements 66
Revision Status/History 67
Ordering Information 68
Disclaimers 68
Contacts. 68

ACS8509 SETS

ADVANCED COMMUNICATIONS
FINAL
DATASHEET
Pin Description

Table 1 Power Pins

Pin Number	Symbol	1/0	Type	Description
12, 13, 16	VD+	P	-	Supply Voltage: Digital supply to gates in analog section, +3.3 Volts $\pm 10 \%$.
33, 39	VDD_DIFF	P	-	Supply Voltage: Digital supply for differential ports, +3.3 Volts $\pm 10 \%$.
44	VDD5	P	-	Digital Supply for +5 Volts Tolerance to Input Pins. Connect to +5 Volts $(\pm 10 \%)$ for clamping to +5 Volts. Connect to VDD for clamping to +3.3 Volts. Leave floating for no clamping, input pins tolerant up to +5.5 Volts.
$\begin{aligned} & 50,61,85, \\ & 8691 \end{aligned}$	VDD	P	-	Supply Voltage: Digital supply to logic, +3.3 Volts $\pm 10 \%$.
6	VA1+	P	-	Supply Voltage: Analog supply to clock multiplying PLL, +3.3 Volts $\pm 10 \%$.
19	VA2+	P	-	Supply Voltage: Analog supply to output PLLs, +3.3 Volts $\pm 10 \%$.
$\begin{aligned} & 11,14,15, \\ & 24,25,29, \\ & 49,62,84, \\ & 87,92 \end{aligned}$	DGND	P	-	Supply Ground: Digital ground for logic
$\begin{array}{\|l\|} \hline 32, \\ 38 \end{array}$	GND_DIFF	P	-	Supply Ground: Digital ground for differential ports.
$\begin{aligned} & 1,5, \\ & 20 \end{aligned}$	AGND	P	-	Supply Ground: Analog grounds.

Note...I $=$ Input, $O=$ Output, $P=$ Power, $T T L{ }^{U}=T T L$ input with pull-up resistor, $T T L_{D}=T T L$ input with pull-down resistor.
Table 2 Not Connected or Internally Connected Pins

Pin Number	Symbol	I/O	Type	Description
$4,17,26$	NC	NC	-	Not connected: Leave to Float
$3,18,22,27$,	IC	IC	-	Internally Connected: Leave to Float.
$28,34,35$,				
$40,41,42$,				
$43,46,47$,				
$52,53,55$,				
$57,89,93$,				
$94,96,97,98$				

Table 3 Other Pins

Pin Number	Symbol	I/O	Type	Description
2	TRST	I	TTL $_{D}$	JTAG Control Reset Input: TRST = 1 to enable JTAG Boundary Scan mode. TRST $=0$ for Boundary Scan stand-by mode, still allowing correct device operation. If not used connect to GND or leave floating.
7	TMS	I	TTL U	JTAG Test Mode Select: Boundary Scan enable. Sampled on rising edge of TCK. If not used connect to VDD or leave floating.

SEMTECH

Table 3 Other Pins (cont...)

Pin Number	Symbol	1/0	Type	Description
8	INTREQ	0	TTL/CMOS	Interrupt Request: Active High software Interrupt output.
9	TCK	1	TTL ${ }_{\text {D }}$	JTAG Clock: Boundary Scan clock input. If not used connect to GND or leave floating. This pin may require a capacitor placed between the pin and the nearest GND, to reduce noise pickup. A value of 10 pF should be adequate, but the value is dependent on PCB layout.
10	REFCLK	1	TTL	Reference Clock: 12.800 MHz (refer to "Local Oscillator Clock" on page 8).
21	TDO	0	TTL/CMOS	JTAG Output: Serial test data output. Updated on falling edge of TCK. If not used leave floating.
23	TDI	1	TTL ${ }^{\text {U }}$	JTAG Input: Serial test data Input. Sampled on rising edge of TCK. If not used connect to VDD or leave floating.
30	FrSync	0	TTL/CMOS	Output Reference: 8 kHz Frame Sync output (square wave).
31	MFrSync	0	TTL/CMOS	Output Reference: 2 kHz Multi-Frame Sync output (square wave).
$\begin{array}{\|l\|} \hline 36 \\ 37 \end{array}$	01P0S, 01NEG	0	PECL/LVDS	Output Reference 01: Programmable, default 19.44 MHz. Also 51.84 MHz, 77.76 MHz, 155.52 MHz. MHz, default type PECL.
45	SYNC2K	1	TTL ${ }_{\text {D }}$	Synchronize 2 kHz : Connect to 2 kHz Multi-Frame Sync output of partner ACS8509 in redundancy system.
48	SEC1	1	TTL ${ }_{\text {D }}$	Input Reference SEC1: Programmable, default 19.44 MHz (Default Priority 7).
51	SEC2	1	TTL ${ }_{\text {D }}$	Input Reference SEC2 : Programmable, default 19.44 MHz (Default Priority 8).
54	SEC3	1	TTL ${ }_{\text {D }}$	Input Reference SEC3: Programmable, default (Master mode) $1.544 / 2.048 \mathrm{MHz}$, default (Slave mode) 6.48 MHz . (Default Priority 11).
56	SEC4	1	TTL ${ }_{\text {D }}$	Input Reference SEC4 (Priority 13): Programmable, default $1.544 / 2.048 \mathrm{MHz}$ (Default Priority 13).
58-60	UPSEL(2:0)	1	TTL ${ }_{\text {D }}$	Microprocessor Select: Configures the interface for a particular microprocessor type at reset.
63-69	A(6:0)	1	TTL ${ }_{\text {D }}$	Microprocessor Interface Address: Address bus for the microprocessor interface registers. A(0) is SDI in Serial mode - output in EPROM mode only.
70	CSB	1	TTL ${ }^{\text {U }}$	Chip Select (Active Low): This pin is asserted Low by the microprocessor to enable the microprocessor interface - output in EPROM mode only.
71	WRB	1	TTL ${ }^{\text {U }}$	Write (Active Low): This pin is asserted Low by the microprocessor to initiate a write cycle. In Motorola mode, WRB = 1 for Read.
72	RDB	1	TTL ${ }^{\text {U }}$	Read (Active Low): This pin is asserted Low by the microprocessor to initiate a read cycle.
73	ALE	1	TTL ${ }_{\text {D }}$	Address Latch Enable: This pin becomes the address latch enable from the microprocessor. When this pin transitions from High to Low, the address bus inputs are latched into the internal registers. ALE $=$ SCLK in Serial mode.
74	PORB	1	TTL ${ }^{\text {U }}$	Power-On Reset: Master reset. If PORB is forced Low, all internal states are reset back to default values.

Table 3 Other Pins (cont...)

Pin Number	Symbol	I/O	Type	Description
75	RDY	0	TTL/CMOS	Ready/Data Acknowledge: This pin is asserted High to indicate the device has completed a read or write operation.
76-83	AD(7:0)	10	TTL ${ }_{\text {D }}$	Address/Data: Multiplexed data/address bus depending on the microprocessor mode selection. AD(0) is SDO in Serial mode.
88	02	0	TTL/CMOS	Output Reference 2: Default 6.48 MHz. Also Dig1 (1.544 MHz/2.048 MHz and $2,4,8 \mathrm{x}$), 19.44 MHz, 25.92 MHz
90	03	0	TTL/CMOS	Output Reference 3: 19.44 MHz - fixed.
95	04	0	TTL/CMOS	Output Reference 4: 1.544/2.048 MHz, (T4 BITS).
99	MSTSLVB	1	TTL ${ }^{\text {U }}$	Master/Slave Select: Sets the initial power-up state (or state after a PORB) of the Master/Slave selection register, Reg. 34, Bit 1. The register state can be changed after power up by software.
100	SONSDHB	1	TTL ${ }_{\text {D }}$	SONET or SDH Frequency Select: Sets the initial power-up state (or state after a PORB) of the SONET/SDH frequency selection registers, Reg. 34, Bit 2 and Reg. 38, Bit 5 and Bit 6. When set Low, SDH rates are selected (2.048 MHz etc.) and when set High, SONET rates are selected (1.544 MHz etc.) The register states can be changed after power-up by software.

Functional Description

The ACS8509 is a highly integrated, single-chip solution for the SETS function in a SONET/SDH Network Element, for the generation of SEC and frame synchronization pulses.

In Free-run mode, the ACS8509 generates a stable, low noise clock signal from an internal oscillator.

In Locked mode, the ACS8509 selects the most appropriate input reference source and generates a stable, low-noise clock signal locked to the selected reference.

In Holdover mode, the ACS8509 generates a stable, lownoise clock signal from the internal oscillator, adjusted to match the last known good frequency of the last selected reference source.

In all modes, the frequency accuracy, jitter and drift performance of the clock meet the requirements of ITU G. $812^{[10]}$, G. $813^{[11]}$, G. $823^{[13]}$, and Telcordia GR-1244CORE ${ }^{[19]}$.

The ACS8509 supports all three types of reference clock source: recovered line clock ($\mathrm{T}_{\text {IN1 }}$), PDH network synchronization timing ($\mathrm{T}_{\mathrm{IN} 2}$) and node synchronization ($\mathrm{T}_{\text {IN3 }}$). The ACS8509 generates independent $\mathrm{T}_{\text {OUTO }}$ and $T_{\text {OUT4 }}$ clocks, an 8 kHz Frame Synchronization clock and a 2 kHz Multi-Frame Synchronization clock.

The ACS8509 has a high tolerance to input jitter and wander. The jitter/wander transfer is programmable (0.1 Hz up to 20 Hz cut-off points).

The ACS8509 supports protection. Two ACS8509 devices can be configured to provide protection against a single ACS8509 failure.

The protection maintains alignment of the two ACS8509 devices (Master and Slave) and ensures that both ACS8509 devices maintain the same priority table, choose the same reference input and generate the $\mathrm{T}_{\text {OUto }}$ clock, the 8 kHz Frame Synchronization clock and the 2 kHz Multi-Frame Synchronization clock with the same phase.

The ACS8509 includes a microprocessor port, providing access to the configuration and status registers for device setup and monitoring.

Local Oscillator Clock

The Master system clock on the ACS8509 should be provided by an external clock oscillator of frequency
12.80 MHz . The clock specification is important for meeting the ITU/ETSI and Telcordia performance requirements for Holdover mode. ITU and ETSI specifications permit a combined drift characteristic, at constant temperature, of all non-temperature related parameters, of up to 10 ppb per day. The same specifications allow a drift of 1 ppm over a temperature range of 0 to $+70^{\circ} \mathrm{C}$.

Table 4 ITU and ETSI Specification

Parameter	Value
Tolerance	$\pm 4.6 \mathrm{ppm}$ over 20 year lifetime
Drift (Frequency Drift over supply voltage range of +2.7 V to +3.3 V)	$\pm 0.05 \mathrm{ppm} / 15$ seconds @ constant temp.
	$\pm 0.01 \mathrm{ppm} /$ day @ constant temp.

Telcordia specifications are somewhat tighter, requiring a non-temperature-related drift of less than 40 ppb per day and a drift of 280 ppb over the temperature range 0 to $+50^{\circ} \mathrm{C}$.

Table 5 Telcordia GR-1244 CORE Specification

Parameter	Value
Tolerance	± 4.6 ppm over 20 year lifetime
Drift (Frequency Drift over supply voltage range of +2.7 V to $+3.3 \mathrm{~V})$	$\pm 0.05 \mathrm{ppm} / 15$ seconds @ constant temp.
	$\pm 0.04 \mathrm{ppm} / 15$ seconds @ constant temp.

Please contact Semtech for information on crystal oscillator suppliers.

Crystal Frequency Calibration

The absolute crystal frequency accuracy is less important than the stability since any frequency offset can be compensated by adjustment of register values in the IC. This allows for calibration and compensation of any crystal frequency variation away from its nominal value. $\pm 50 \mathrm{ppm}$ adjustment would be sufficient to cope with most crystals, in fact the range is an order of magnitude larger due to the use of two 8-bit register locations. The setting of the conf_nominal_frequency register allows for this adjustment. An increase in the register value increases the output frequencies by 0.02 ppm for each LSB step. The default value (in decimal) is 39321.

The minimum being 0 and the maximum 65535, gives a -700 ppm to +500 ppm adjustment range of the output frequencies.

For example, if the crystal was oscillating at 12.8 MHz +5 ppm , then the calibration value in the register to give a -5 ppm adjustment in output frequencies to compensate for the crystal inaccuracy, would be:
39321 - $(5 / 0.02)=39071$ (decimal)

Input Interfaces

The ACS8509 supports up to four input reference clock sources from input types $\mathrm{T}_{\mathrm{IN} 1}, \mathrm{~T}_{\mathrm{IN} 2}$ and $\mathrm{T}_{\mathrm{IN} 3}$ using TTL/ CMOS I/O technologies. These interface technologies support +3.3 V and +5 V operation.

Over-Voltage Protection

The ACS8509 may require Over-Voltage Protection on input reference clock ports according to ITU Recommendation K.41. Semtech protection devices are recommended for this purpose (see separate Semtech data book).

Input Reference Clock Ports

Table 6 gives details of the input reference ports, showing the input technologies and the range of frequencies supported on each port; the default spot frequencies and default priorities assigned to each port on power-up or by reset are also shown. Note that SDH and SONET networks use different default frequencies; the network type is pinselectable using the SONSDHB pin). Specific frequencies and priorities are set by configuration.

Although each input port is shown as belonging to one of the types, $\mathrm{T}_{\mathrm{IN} 1}, \mathrm{~T}_{\mathrm{IN} 2}$ or $\mathrm{T}_{\mathrm{IN} 3}$, they are fully interchangeable as long as the selected speed is within the maximum operating speed of the input port technology.

SDH and SONET networks use different default frequencies; the network type is selectable using the config_mode register 34 Hex , bit 2.

For SONET, config_mode register 34 Hex, bit 2 = 1, for SDH config_mode register 34 Hex , bit $2=0$. On power-up or by reset, the default will be set by the state of the SONSDHB pin (pin 100). Specific frequencies and priorities are set by configuration.

TTL ports (compatible also with CMOS signals) support clock speeds up to 100 MHz , with the highest spot
frequency being 77.76 MHz . The actual spot frequencies supported are:

- 2 kHz ,
- 4 kHz ,
- 8 kHz (and $\mathrm{N} \times 8 \mathrm{kHz}$),
- $1.544 \mathrm{MHz}($ SONET $) / 2.048 \mathrm{MHz}$ (SDH),
- 6.48 MHz ,
- 19.44 MHz,
- 25.92 MHz ,
- 38.88 MHz ,
- 51.84 MHz ,
- 77.76 MHz.

The frequency selection is programmed via the cnfg_ref_source_frequency register. The internal DPLL will normally lock to the selected input at the frequency of the input, e.g. 19.44 MHz will lock the DPLL phase comparisons at 19.44 MHz . It is, however, possible to utilize an internal pre-divider to the DPLL to divide the input frequency before it is used for phase comparisons in the DPLL. This pre-divider can be used in one of 2 ways:

1. Any of the supported spot frequencies can be divided to 8 kHz by setting the lock 8 K bit (bit 6) in the appropriate cnfg_ref_source_frequency register location. For good jitter tolerance for all frequencies and for operation at 19.44 MHz and above, use lock8K. It is possible to choose which edge of the 8 kHz input to lock to, by setting the appropriate bit of the cnfg_control1 register.
2. Any multiple of 8 kHz between 1544 kHz to 100 MHz can be supported by using the DivN feature (bit 7 of the cnfg_ref_source_frequency register). Any reference input can be set to use DivN independently of the frequencies and configurations of the other inputs.

Any reference input with the DivN bit set in the cnfg_ref_source_frequency register will employ the internal pre-divider prior to the DPLL locking.

The cnfg_freq_divn register contains the divider ratio N where the reference input will get divided by $(\mathrm{N}+1)$ where $0<N<2^{14}-1$. The cnfg_ref_source_frequency register must be set to the closest supported spot frequency to the input frequency, but must be lower than the input frequency. When using the DivN feature the post-divider

SEMTECH

Table 6 Input Reference Source Selection and Priority Table

Port Number	Channel Number (Bin)	Port Type	Input Port Technology	Frequencies Supported	Default Priority
SEC1	0111	$\mathrm{T}_{\mathrm{IN} 1}$	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (SONET): 19.44 MHz Default (SDH): 19.44 MHz	8
SEC2	1000	$\mathrm{T}_{\mathrm{IN} 1}$	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (SONET): 19.44 MHz Default (SDH): 19.44 MHz	9
SEC3	1011	$\mathrm{T}_{\mathrm{IN} 2}$	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (Master) (SONET): 1.544 MHz Default (Master) (SDH): 2.048 MHz Default (Slave) 6.48 MHz	12/1 (Note (ii))
SEC4	1101	$\mathrm{T}_{\text {IN2 }}$	TTL/CMOS	Up to 100 MHz (see Note (i)) Default (SONET): 1.544 MHz Default (SDH): 2.048 MHz	14

[^0]frequency must be 8 kHz , which is indicated by setting the lock8k bit high (bit 6 in cnfg_ref_source_frequency register). Any input set to DivN must have the frequency monitors disabled (If the frequency monitors are disabled, they are disabled for all inputs regardless of the input configurations, in this case only activity monitoring will take place). Whilst any number of inputs can be set to use the DivN feature, only one N can be programmed, hence all inputs using the DivN feature must require the same division to get to 8 kHz .

DivN Examples

To lock to 2.000 MHz :

1. The cnfg_ref_source_frequency register is set to 11 XX0001 (binary) to set the DivN, lock8k bits, and the frequency to E1/DS1. (XX = "leaky bucket" ID for this input).
2. The cnfg_mode register (34 Hex) bit 2 needs to be set to 1 to select SONET frequencies (DS1).
3. The frequency monitors are disabled in cnfg_monitors register (48 Hex) by writing 00 to bits 0 and 1 .
4. The DivN register is set to F9 Hex (249 decimal).

To lock to 10.000 MHz :

1. The cnfg_ref_source_frequency register is set to 11 XX0010 (binary) to set the DivN, lock8k bits, and the frequency to 6.48 MHz . (XX = "leaky bucket" ID for this input).
2. The frequency monitors are disabled in cnfg_monitors register (48 Hex) by writing 00 to bits 0 and 1 .
3. The DivN register is set to 4 E 1 Hex (1249 decimal).

Input Wander and Jitter Tolerance

The ACS8509 is compliant to the requirements of all relevant standards, principally ITU Recommendation G. $825^{[15]}$, ANSI T1.101-1999 ${ }^{[1]}$ and ETSI ETS 300 462-5 $(1996)^{[4]}$.
All reference clock inputs have a tight frequency tolerance but a generous jitter tolerance. Pullin, hold-in and pull-out ranges are specified for each input port in Table 7. Minimum jitter tolerance masks are specified in Figures 3 and 4 , and Tables 8 and 9 , respectively. The ACS8509 will tolerate wander and jitter components greater than those shown in Figure 3 and Figure 4, up to a limit determined by a combination of the apparent long-term frequency offset caused by wander and the eye-closure caused by jitter (the input source will be rejected if the offset pushes

ADVANCED COMMUNICATIONS

FINAL
DATASHEET
the frequency outside the hold-in range for long enough to be detected, whilst the signal will also be rejected if the eye closes sufficiently to affect the signal purity). The " 8 klock " mode should be engaged for high jitter tolerance according to these masks. All reference clock ports are monitored for quality, including frequency offset and general activity. Single short-term interruptions in selected reference clocks may not cause rearrangements, whilst longer interruptions, or multiple, short-term interruptions, will cause rearrangements, as will frequency offsets which are sufficiently large or sufficiently long to cause loss-of-lock in the phase-locked loop. The failed reference source will be removed from the priority table and declared as unserviceable, until its perceived quality has been restored to an acceptable level.

The registers sts_curr_inc_offset (address OC, OD, 07) report the frequency of the DPLL with respect to the external TCXO frequency. This is a 19-bit signed number with one LSB representing 0.0003 ppm (range of $\pm 80 \mathrm{ppm})$. Reading this regularly can show how the currently locked source is varying in value e.g. due to wander on its input.

The ACS8509 performs automatic frequency monitoring with an acceptable input frequency offset range of $\pm 16.6 \mathrm{ppm}$. The ACS8509 DPLL has a programmable frequency limit of $\pm 80 \mathrm{ppm}$. If the range is programmed to be > 16.6 ppm , the frequency monitors should be disabled so the input reference source is not automatically rejected as out of frequency range.

Table 7 Input Reference Source Jitter Tolerance

Jitter Tolerance	Frequency Monitor Acceptance Range	Frequency Acceptance Range (Pull-in)	Frequency Acceptance Range (Hold-in)	Frequency Acceptance Range (Pull-out)
G. 703		$\pm 4.6 \mathrm{ppm}$ $(\mathrm{see}$ Note (i))	$\pm 4.6 \mathrm{ppm}$ (see Note (i))	$\pm 4.6 \mathrm{ppm}$ (see Note (i))
G. 783	$\pm 16.6 \mathrm{ppm}$	$\pm 9.2 \mathrm{ppm}$ (see Note (ii))	$\pm 9.2 \mathrm{ppm}$ (see Note (ii))	$\pm 9.2 \mathrm{ppm}$ (see Note (ii))
G. 823				

[^1]Figure 3 Minimum Input Jitter Tolerance (OC-3/STM-1)

Note...For inputs supporting G. $783^{[9]}$ compliant sources.)
Table 8 Amplitude and Frequency Values for Jitter Tolerance (OC-3/STM-1)

STM level	Peak to peak amplitude (unit Interval)					Frequency (Hz)									
	AO	A1	A2	A3	A4	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9
STM-1	2800	311	39	1.5	0.15	12 u	178 u	1.6 m	15.6 m	0.125	19.3	500	6.5 k	65 k	1.3m

Frame Sync and Multi-Frame Sync Clocks (Part of Touto)

Frame Sync (8 kHz) and Multi-Frame Sync (2 kHz) clocks are provided on outputs "FrSync" and "MFrSync". The FrSync and MFrSync clocks have a 50:50 mark space ratio. These are driven from the $\mathrm{T}_{\text {OUTO }}$ clock. They are synchronized with their counterparts in a second ACS8509 device (if used), using the technique described later.

Output Clock Ports

The device supports a set of main output clocks, $\mathrm{T}_{\text {OUTO }}$ and $\mathrm{T}_{\text {OUT4 }}$, and a pair of secondary output clocks, "Frame Sync" and "Multi-Frame Sync". The two main output clocks, $\mathrm{T}_{\text {OUTO }}$ and $\mathrm{T}_{\text {OUT4 }}$, are independent of each other and are individually selectable. The two secondary output clocks, Frame Sync and Multi-Frame Sync, are derived from $T_{\text {OUto }}$. The frequencies of the output clocks are selectable from a range of pre-defined spot frequencies and a variety of output technologies are supported, as defined in Table 10.

Low-speed Output Clock ($\mathrm{T}_{\text {OUT4 }}$)

The $\mathrm{T}_{\text {OUT4 } 4}$ clock is supplied on output port 04. This port will provide a TTL/CMOS signal at either 1.544 MHz or 2.048 MHz , depending on the setting of the SONSDHB pin.

High-speed Output Clock (Part of $\mathrm{T}_{\text {Outo }}$)

The $\mathrm{T}_{\text {OUto }}$ port has multiple outputs. Output 01 is differential and can support clocks up to 155.52 MHz . Output 02 is a TTL/CMOS output with a choice of 11 different frequencies up to 51.84 MHz . Output 03 is a TTL/CMOS output with fixed frequency of 19.44 MHz . Each output is individually configured to operate at the frequencies shown in Table 10 (configuration must be consistent between ACS8509 devices for protectionswitching to be effective - output clocks will be phasealigned between devices). Using the cnfg_differential_outputs register, output 01 can be made to be LVDS or PECL compatible.

Figure 4 Minimum Input Jitter Tolerance (DS1/E1)

Table 9 Amplitude and Frequency Values for Jitter Tolerance (DS1/E1)

Type	Spec.	Amplitude ($\mathrm{Ul}_{\mathrm{p}-\mathrm{p}}$)		Frequency (Hz)			
		A1	A2	F1	F2	F3	F4
DS1	GR-1244-CORE ${ }^{[19]}$	5	0.1	10	500	8 k	40 k
E1	ITU G. $823{ }^{[13]}$	1.5	0.2	20	2.4 k	18 k	100k

Low Jitter Multiple E1/DS1 Outputs

This feature is activated using the cnfg_controll register. This sends a frequency of twice the Dig2 rate (see reg addr 39 h , bits $7: 6$) to the APLL instead of the normal 77.76 MHz . For this feature to be used, the Dig2 rate must only be set to $12352 \mathrm{kHz} / 16384 \mathrm{kHz}$ using the cnfg_TO_output_frequencies register. The normal OC-3 rate outputs are then replaced with E1/DS1 multiple rates. The E1(SONET)/DS1(SDH) selection is made in the same way as for Dig2 using the cnfg_TO_output_enable register.

Table 11 shows the relationship between primary output frequencies and the corresponding output in E1/DS1 mode, and from which output they are available.

Output Wander and Jitter

Wander and jitter present on the output clocks are dependent on:

1. The magnitude of wander and jitter on the selected input reference clock (in Locked mode).
2. The internal wander and jitter transfer characteristic (in Locked mode).
3. The jitter on the local oscillator clock.
4. The wander on the local oscillator clock (in Holdover mode).

Wander and jitter are treated in different ways to reflect their differing impacts on network design. Jitter is always strongly attenuated, whilst wander attenuation can be varied to suit the application and operating state. Wander and jitter attenuation is performed using a digital phase locked loop (DPLL) with a programmable bandwidth. This gives a transfer characteristic of a low pass filter, with a programmable pole. It is sometimes necessary to change the filter dynamics to suit particular circumstances - one example being when locking to a new source, the filter can be opened up to reduce locking time and can then be gradually tightened again to remove wander. Since wander represents a relatively long-term deviation from the nominal operating frequency, it affects the rate of supply of data to the network element. Strong wander attenuation limits the rate of consumption of data to within a smaller range, so a larger buffer store is required to prevent data loss. But, since any buffer store potentially

Table 10 Output Reference Source Selection Table

Port Name	Output Port Technology	Frequencies Supported
01	PECL/LVDS (PECL default)	19.44 MHz (default), $51.84 \mathrm{MHz}, 77.76 \mathrm{MHz}, 155.52 \mathrm{MHz}$
02	TTL/CMOS	$1.544 \mathrm{MHz} / 2.048 \mathrm{MHz}, 3.088 \mathrm{MHz} / 4.096 \mathrm{MHz}, 6.176 \mathrm{MHz} / 8.192 \mathrm{MHz}, 6.48 \mathrm{MHz}$ (default), 12.352 $\mathrm{MHz} / 16.384 \mathrm{MHz}, 19.44 \mathrm{MHz}, 25.92 \mathrm{MHz}$
03	TTL/CMOS	19.44 MHz - fixed
04	TTL/CMOS	$1.544 \mathrm{MHz} / 2.048 \mathrm{MHz}$
FrSync	TTL/CMOS	FrSync, 8 kHz - with a $50: 50 \mathrm{MSR}$
MFrSync	TTL/CMOS	MFrSync, 2 kHz - with a $50: 50 \mathrm{MSR}$

Note...1.544 MHz/2.048 MHz are shown for SONET/SDH respectively. Pin SONSDHB controls default, when High SONET is default.

Table 11 Multiple E1/DS1 Outputs in Relation to Standard Outputs

Mode	Freq to APLL	APLL Multiplier	APLL Freq	clk_filt	clk_ filt/2	clk_ filt/4	clk_filt/6	clk_ filt/8	$\begin{gathered} \text { clk_ }_{-} \\ \text {filt/12 } \end{gathered}$	$\underset{\text { clk_- }}{\text { filt/16 }}$	$\begin{aligned} & \text { clk_} \\ & \text { filt/48 } \end{aligned}$	DPLL Freq
Default	77.76	4	311.04	311.04	155.52	77.76	51.84	38.88	25.92	19.44	6.48	77.76
n value						16		8		4		
n x E1	32.768	4	131.072	131.072	65.536	32.768	21.84533	16.384	10.92267	8.192	2.730667	77.76
$\mathrm{n} \times \mathrm{T} 1$	24.704	4	98.816	98.816	49.408	24.704	16.46933	12.352	8.234667	6.176	2.058667	77.76
Frequencies Available by Output										02		
										03		
					01					01		

increases latency, wander may often only need to be removed at specific points within a network where buffer stores are acceptable, such as at digital cross connects. Otherwise, wander is sometimes not required to be attenuated and can be passed through transparently. The ACS8509 has programmable wander transfer characteristics in a range from 0.1 Hz to 20 Hz . The wander and jitter transfer characteristic is shown in Figure 5.

Wander on the local oscillator clock will not have significant effect on the output clock whilst in Locked mode, so long as the DPLL bandwidth is set high enough so that the DPLL can compensate quickly enough for any frequency changes in the crystal. In Free-run or Holdover mode wander on the crystal is more significant. Variation in crystal temperature or supply voltage both cause drifts in operating frequency, as does ageing. These effects
must be limited by careful selection of a suitable component for the local oscillator, as specified in the Section "Local Oscillator Clock" on page 8.

Phase Variation

There will be a phase shift across the ACS8509 between the selected input reference source and the output clock. This phase shift may vary over time but will be constrained to lie within specified limits. The phase shift is characterized using two parameters, MTIE (Maximum Time Interval Error), and TDEV (Time Deviation), which, although being specified in all relevant specifications, differ in acceptable limits in each one. Typical measurements for the ACS8509 are shown in Figures 6 and 7, for Locked mode operation. Figure 8 shows a typical measurement of Phase Error accumulation in Holdover mode operation.

Figure 5 Sample of Wander and Jitter Measured Transfer Characteristics

The required performance for phase variation during Holdover is specified in several ways depending upon the particular circumstances pertaining:

1. ETSI 300 462-5, Section 9.1, requires that the short term phase error during switchover (i.e., Locked to Holdover to Locked) be limited to an accumulation rate no greater than 0.05 ppm during a 15 second interval.
2. ETSI $300462-5$, Section 9.2, requires that the long term phase error in the Holdover mode should not exceed:

$$
\left\{(a 1+a 2) S+0.5 S^{2}+c\right\} \text { where: }
$$

a1 $=50 \mathrm{~ns} / \mathrm{s}$ (allowance for initial frequency offset)
a2 $=2000 \mathrm{~ns} / \mathrm{s}$ (allowance for temperature variation)
$\mathrm{b}=1.16 \times 10^{-4} \mathrm{~ns} / \mathrm{s}^{2}$ (allowance for ageing) $\mathrm{c}=120 \mathrm{~ns}$ (allowance for entry into Holdover mode).
3. ANSI Tin1.101-1994, Section 8.2.2, requires that the phase variation be limited so that no more than 255
slips (of $125 \mu \mathrm{~s}$ each) occur during the first day of Holdover. This requires a frequency accuracy better than:
$((24 \times 60 \times 60)+(255 \times 125 \mu \mathrm{~s})) /(24 \times 60 \times 60)=0.37 \mathrm{ppm}$
Temperature variation is not restricted, except to within the normal bounds of 0 to $50^{\circ} \mathrm{C}$.
4. Telcordia GR.1244.CORE, Section 5.2., Table 4, shows that an initial frequency offset of 50 ppb is permitted on entering Holdover, whilst a drift over temperature of 280 ppb is allowed; an allowance of 40 ppb is permitted for all other effects.
5. ITU G.822, Section 2.6, requires that the slip rate during category (b) operation (interpreted as being applicable to Holdover mode operation) be limited to less than 30 slips (of 125μ s each) per hour:
$((((60 \times 60) / 30)+125 \mu \mathrm{~s}) /(60 \times 60))=1.042 \mathrm{ppm}$

ACS8509 SETS

ADVANCED COMMUNICATIONS

FINAL
DATASHEET
Figure 6 Maximum Time Interval Error of $T_{\text {outo }}$ Output Port

Figure 7 Time Deviation of $T_{\text {outo }}$ Output Port

Figure 8 Phase Error Accumulation of TO PLL Output Port in Holdover Mode

ADVANCED COMMUNICATIONS

Phase Build-Out

Phase Build-Out (PBO) is the function to minimize phase transients on the output SEC clock during input reference switching. If the currently selected input reference clock source is lost (due to a short interruption, out of frequency detection, or complete loss of reference), the second, next highest priority reference source will be selected. During this transition, the Lost_Phase mode is entered.

The typical phase disturbance on clock reference source switching will be less than 12 ns on the ACS8509. For clock reference switching caused by the main input failing or being disconnected, then the phase disturbance on the output will still be less than the 120 ns allowed for in the G .813 spec. The actual value is dependent on the frequency being locked to.
ITU-T G. 813 states that the max allowable short term phase transient response, resulting from a switch from one clock source to another, with Holdover mode entered in between, should be a maximum of 1μ s over a 15 second interval. The maximum phase transient or jump should be less than 120 ns at a rate of change of less than 7.5 ppm and the Holdover performance should be better than 0.05 ppm .

On the ACS8509, PBO can be enabled, disabled or frozen using the μ P interface. By default, it is enabled. When PBO is enabled, it can also be frozen, which will disable the PBO operation on the next input reference switch, but will remain with the current offset. If PBO is disabled while the device is in the Locked mode, there will be a phase jump on the output SEC clocks as the DPLL locks back to 0 degree phase error.

Microprocessor Interface

The ACS8509 incorporates a microprocessor interface, which can be configured for the following modes via the bus interface mode control pins UPSEL(2:0) as defined in Table 12.

Table 12 Microprocessor Interface Mode Selection

UPSEL(2:0)	Mode	Description
$111(7)$	OFF	Interface disabled
$110(6)$	OFF	Interface disabled
$101(5)$	SERIAL	Serial uP bus interface
$100(4)$	MOTOROLA	Motorola interface
$011(3)$	INTEL	Intel compatible bus interface
$010(2)$	MULTIPLEXED	Multiplexed bus interface
$001(1)$	EPROM	EPROM read mode
$000(0)$	OFF	Interface disabled

Motorola Mode

Parallel data + address: this mode is suitable for use with Motorola's 68x0 type bus.

Intel Mode

Parallel data + address: this mode is suitable for use with Intel's 80×86 type bus.

Multiplexed Mode

Data/address: this mode is suitable for use with microprocessors which share bus signals between address and data (e.g., Intel's 80x86 family).

Serial Mode

This mode is suitable for use with microprocessor which use a serial interface.

EPROM Mode

This mode is suitable for simple standalone applications where it is required to change the default loading of the register values to suit different applications.

This can be done by loading values from an external ROM. The data is read from the ROM automatically after powerup when the UPSEL(2:0) pins are set to "001". Each register value is stored sequentially, with ROM address 0 corresponding to register address 0 and so on.

The value in the chip_id location (address $00 \& 01$) is checked to see if it matches the ID number of the ACS8509 (value 213E). Upon a successful number match, the remaining data from the ROM is used to set the internal register values. Only 64 locations in the ROM are required.

Register Set

All registers are 8-bits wide, organized with the mostsignificant bit positioned in the left-most bit, with bit significance decreasing towards the right most bit. Some registers carry several individual data fields of various sizes, from single-bit values (e.g. flags) upwards. Several data fields are spread across multiple registers; their organization is shown in the register map, Table 13.

Configuration Registers

Each configuration register reverts to a default value on power-up or following a reset. Most default values are fixed, but some will be pinsettable. All configuration registers can be read out over the microprocessor port.

Status Registers

The Status Registers contain readable registers. They may all be read from outside the chip but are not writeable from outside the chip (except for a clearing operation). All status registers are read via shadow registers to avoid data hits due to dynamic operation. Each individual status register has a unique location.

Register Access

Most registers are of one of two types, configuration registers or status registers, the exceptions being the chip_ID and chip_revision registers. Configuration registers may be written to or read from at any time (the complete 8 -bit register must be written, even if only one bit is being modified). All status registers may be read at any time and, in some status registers (such as the sts_interrupts register), any individual data field may be cleared by writing a " 1 " into each bit of the field (writing a " 0 " value into a bit will not affect the value of the bit). A description of each register is given in the Register Map, and Register Map Description.

Interrupt Enable and Clear

Interrupt requests are flagged on pin INTREQ (active High). Bits in the interrupt status register
are set (high) by the following conditions:

1. Any reference source becoming valid or going invalid.
2. A change in the operating state (e.g. Locked, Holdover etc.)
3. A brief loss of the currently selected reference source.

All interrupt sources are maskable via the mask register, each one being enabled by writing a " 1 " to the appropriate bit. Any unmasked bit set in the interrupt status register will cause the interrupt request pin to be asserted (high). All interrupts are cleared by writing a " 1 " to the bit(s) to be cleared in the status register. When all pending unmasked interrupts are cleared the interrupt pin will go inactive (low).

The loss of the currently selected reference source will eventually cause the input to be considered invalid, triggering an interrupt. The time taken to raise this interrupt is dependant on the leaky bucket configuration of the activity monitors. The fastest leaky bucket setting will still take up to 128 ms to trigger the interrupt. The interrupt caused by the brief loss of the currently selected reference source is provided to facilitate very fast source failure detection if desired. It is triggered after missing just a couple of cycles of the reference source. Some applications require the facility to switch downstream devices based on the status of the reference sources. In order to provide extra flexibility, it is possible to flag the "main reference failed" interrupt (addr 06, bit 6) on the pin TDO. This is simply a copy of the status bit in the interrupt register and is independent of the mask register settings. The bit is reset by writing to the interrupt status register in the normal way. This feature can be enabled and disabled by writing to bit 6 of register 48 Hex .

Register Map

Shaded areas in the map are "don't care" and writing either 0 or 1 will not affect any function of the device. Bits labelled Set to 0 or Set to 1 must be set as stated during initialization of the device, either following power-up, or after a power-on reset (POR). Failure to correctly set these bits may result in the device operating in an unexpected way.

Some registers do not appear in this list. These are either not used, or have test functionality. Do not write to any undefined registers as this may cause the device to operate in a test mode. If an undefined register has been inadvertently addressed, the device should be reset to ensure the undefined registers are at default values.

SEMTECH

Table 13 Register Map

SEMTECH

Table 13 Register Map (cont...)

SEMTECH

Table 13 Register Map (cont...)

Addr (Hex)	Register Name	Data Bit							
		7 (msb)	6	5	4	3	2	1	0 (lsb)
43	cnfg_interrupt_mask (read/write)		<SEC1> valid change	Set to 0					
44		Operating mode	Main ref. failed	Set to 0	<SEC4> valid change	Set to 0	<SEC3> valid change	Set to 0	Set to 0
45					T4 ref	Set to 0	Set to 0	Set to 0	Set to 0
46	cnfg_freq_divn (read/write)	Divide-input-by-n ratio (7:0)							
47						Divide-inpu	-n ratio (13		
48	cnfg_monitors (read/write)		Flag ref lost on TDO	Ultra-fast switching		Freeze phase buildout	Phase buildout enable	Freque configu	onitors (1:0)
50	cnfg_activ_upper_ threshold0 (read/write)	Configuration 0: Activity alarm set threshold (7:0)							
51	cnfg_activ_lower_ threshold0 (read/write)	Configuration 0: Activity alarm reset threshold (7:0)							
52	cnfg_bucket_size0 (read/write)	Configuration 0: Activity alarm bucket size (7:0)							
53	cnfg_decay_rate0 (read/write)							Cfg 0:decay_rate (1:0)	
54	cnfg_activ_upper_ threshold1 (read/write)	Configuration 1: Activity alarm set threshold (7:0)							
55	cnfg_activ_lower_ threshold1 (read/write)	Configuration 1: Activity alarm reset threshold (7:0)							
56	cnfg_bucket_size1 (read/write)	Configuration 1: Activity alarm bucket size (7:0)							
57	cnfg_decay_rate1 (read/write)							Cfg 1:decay_rate (1:0)	
58	cnfg_activ_upper_ threshold2 (read/write)	Configuration 2: Activity alarm set threshold (7:0)							
59	cnfg_activ_lower_ threshold2 (read/write)	Configuration 2: Activity alarm reset threshold (7:0)							
5A	cnfg_bucket_size2 (read/write)	Configuration 2: Activity alarm bucket size (7:0)							

Table 13 Register Map (cont...)

Addr (Hex)	Register Name	Data Bit							
		7 (msb)	6	5	4	3	2	1	0 (Isb)
5B	cnfg_decay_rate2 (read/write)							Cfg 2	rate (1:0)
5C	cnfg_activ_upper_ threshold3 (read/write)	Configuration 3: Activity alarm set threshold (7:0)							
5D	cnfg_activ_lower_ threshold3 (read/write)	Configuration 3: Activity alarm reset threshold (7:0)							
5E	cnfg_bucket_size3 (read/write)	Configuration 3: Activity alarm bucket size (7:0)							
5F	cnfg_decay_rate3 (read/write)							Cfg 3:decay_rate (1:0)	
7F	cnfg_uPsel (read/write)						Microprocessor type		

ACS8509 SETS

ADVANCED COMMUNICATIONS
FINAL
DATASHEET

Register Map Description

Table 14 Register Description

Addr. (Hex)	Register Name	Description	Default Value (Bin)
	chip_id	This register contains the chip ID.	
00		Bits (7:0) Chip ID bits (7:0).	00111110
01		Bits (7:0) Chip ID bits (15:8).	00100001
02	chip_revision	This read only register contains the chip revision number. This revision = 1 Last revision (engineering samples) $=0$.	00000001
03	cnfg_control1	Bits (7:6) Unused. Bit 5 =1 32/24 MHz to APLL: Feeds $2 x$ Dig2 frequency to the APLL instead of the normal 77.76 MHz . Thus the normal OC-3/STM1 outputs are replaced with multiple E1/T1 rates. Note: Dig2 set bits (Reg. 39h Bits (7:6)) must be set to 11 for this mode. $=0 \quad 77.76 \mathrm{MHz}$ to APLL. Bit 4 =1 Synchronizes the dividers in the output APLL section to the dividers in the DPLL section such that their phases align. This is necessary in order to have phase alignment between inputs and output clocks at $\mathrm{OC}-3$ derived rates (6.48 MHz to 77.76 MHz). Keeping this bit high may be necessary to avoid the dividers getting out of synchronization when quick changes in frequency occur such as a force into Free-run. $=0$ The dividers may get out of phase following step changes in frequency, but in this mode the correct number of high frequency edges is guaranteed within any synchronization period. The output will frequency lock (default). The device will always remain in synchronization 2 seconds from a reset, before the default setting applies. Bit 3 Test control - leave unchanged, or set to 0 . Bit 2 $=1$ When in 8 k locking mode the system will lock to the rising input clock edge. $=0$ When in 8 k locking mode the system will lock to the falling input clock edge. Bits (1:0) Test controls - leave unchanged, or set to 00.	XX000000
04	cnfg_control2	Bits (7:6) Unused. Bits (5:3) define the phase loss flag limit. By default set to 4 (100) which corresponds to approximately 140°. A lower value sets a corresponding lower phase limit. The flag limit determines the value at which the DPLL indicates phase lost as a result of input jitter, a phase jump, or a frequency jump on the input. Bits (2:0) Test controls - leave unchanged, or set to 010.	XX100010

Table 14 Register Description (cont...)

Addr. (Hex)	Register Name	Description	Default Value (Bin)
05	sts_interrupts	Bit 7 SEC2 valid change. Bit 6 SEC1 valid change. Bits (5:0) Unused.	00000000
06		Bit 7 Operating mode. Bit 6 Main ref failed. Bit 5 Unused. Bit 4 SEC4 valid change. Bit 3 Unused. Bit 2 SEC3 valid change. Bits (1:0) Unused.	00000000
08	sts_T4_inputs	This register holds the status flags of the $T_{\text {OUT4 }}$ reference. The alarm once set will hold its state until reset. The bit may be cleared by writing a " 1 " to it, thus resetting the interrupt. Writing " 0 "s will have no effect. This bit can also generate an nterrupt. Bits (7:5) Unused. Bit 4 $=1 \quad$ T4 reference failed - no valid $\mathrm{T}_{\text {IN1 }}$ input (SEC2 or SEC1), T4 DPLL cannot lock to source (default). $=0 \quad \mathrm{~T} 4$ reference good - valid $\mathrm{T}_{\mathrm{IN} 1}$ input available. Bits (3:0) Unused.	XXX10000
09	sts_operating_mode	This read-only register holds the current operating state of the main state machine. Figure 10 shows how the values of the "operating state" variable match with the individual states. Bits (7:3) Unused.	XXXXX001

Table 14 Register Description (cont...)

Addr (Hex)	Register Name	Description	Default Value (Bin)
	sts_priority_table	This is a 16-bit read-only register. Bits (15:12) Third highest priority valid source: this is the channel number of the input reference source which is valid and has the next-highest priority to the second-highest-priority valid source. Bits (11:8) Second highest priority valid source: this is the channel number of the input reference source which is valid and has the next-highest priority to the highestpriority valid source. Bits (7:4) Highest priority valid source: this is the channel number of the input reference source which is valid and has the highest priority - it may not be the same as the currently selected reference source (due to failure history or changes in programmed priority). Bits (3:0) Currently selected reference source: this is the channel number of the input reference source which is currently input to DPLL. Note that these registers are updated by the state machine in response to the contents of the cnfg_ref_selection_priority register and the ongoing status of individual channels; channel number "0000", appearing in any of these registers, indicates that no channel is available for that priority.	
OA		Bits (7:4) Highest priority valid source (sts_priority_table bits (7:4)) Bits (3:0) Currently selected reference source (sts_priority_table bits (3:0))	0000000
OB		Bits (7:4) 3rd-highest priority valid source (sts_priority_table bits (15:12)) Bits (3:0) 2nd-highest priority valid source (sts_priority_table bits (11:8))	0000000
	sts_curr_inc_offset	This read-only register contains a signed-integer value representing the 19 significant bits of the current increment offset of the digital PLL. The register may be read periodically to build up a historical database for later use during holdover periods (this would only be necessary if an external oscillator which did not meet the stability criteria described in Local Oscillator Clock section is used). The register will read 00000000 immediately after reset.	
OC		Bits (7:0) sts_curr_inc_offset bits (7:0)	00000000
OD		Bits (7:0) sts_curr_inc_offset bits (15:8)	00000000
07		Bits (7:3) Unused Bits (2:0) sts_curr_inc_offset bits (18:16)	XXXXX000
	sts_sources_valid	This register contains a bit to show validity for every reference source. =1 Valid source =0 Invalid source (default)	
OE		Bit 7 SEC2 Bit 6 SEC1 Bits (5:0) Unused	00000000
OF		Bits (7:5) Unused Bit 4 SEC4 Bit 3 Unused Bit 2 SEC3 Bits (1:0) Unused	XX000000

Table 14 Register Description (cont...)

Addr. (Hex)	Register Name	Description	Default Value (Bin)
	sts_reference_sources	This is a 3-byte register which holds the status of each of the 4 input reference sources. The status of each reference source is shown in a 4 -bit field. Each bit is active high. To aid status checking, a copy of each status bit 3 is provided in the sts_sources_valid register. The status is reported as follows: (Each bit may be cleared individually.) Status bit 3 = Source valid (no alarms) (bit 3 is combination of bits (2:0)) (default 0) Status bit 2 = out-of-band alarm (default 1) Status bit 1 = no activity alarm (default 1) Status bit $0=$ phase lock alarm (default 0)	
13		Bits (7:4) Status of input reference source <SEC2>. Bits (3:0) Status of input reference source <SEC1>.	01100110
15		Bits (7:4) Unused. Bits (3:0) Status of input reference source <SEC3>.	01100110
16		Bits (7:4) Unused. Bits (3:0) Status of input reference source <SEC4>.	01100110
	cnfg_ref_selection_ priority	This register holds the priority of each of the 4 input reference sources. The priority values are all relative to each other, with lower-valued numbers taking higher priorities. Only the values " 1 " to " 15 " (dec) are valid - " 0 " disables the reference source. Each reference source should be given a unique number, however two sources given the same priority number will be assigned on a first in first out basis. It is recommended to reserve the priority value " 1 " as this is used when forcing reference selection via the cnfg_ref_selection register. If the User does not intend to use the cnfg_ref_selection register then the priority value " 1 " need not be reserved.	
1B		Bits (7:4) Programmed priority of input reference source <SEC2>. Bits (3:0) Programmed priority of input reference source <SEC1>.	10011000
1D		Bits (7:4) Unused. Bits (3:0) Programmed priority of input reference source <SEC3>.	$\begin{gathered} 11010001 \\ (\text { MSTSLVB }=0) \\ 11011100 \\ (\text { MSTSLVB }=1) \end{gathered}$
1E		Bits (7:4) Unused. Bits (3:0) Programmed priority of input reference source <SEC4>.	11111110

Table 14 Register Description (cont...)

| Addr.
 (Hex) | Register Name
 cnfg_ref_source_
 frequency | This register is used to set up each of the 4 input reference sources.
 Bits (7:6) of each byte defines the operation undertaken on the input frequency, in
 accordance with the following key: | Default Value (Bin) |
| :--- | :--- | :--- | :--- | :--- |

Table 14 Register Description (cont...)

Addr. (Hex)	Register Name	Description	Default Value (Bin)
	cnfg_sts_remote_ sources_ valid	This register holds the status of the reference sources supplied to the other device in a master/slave configuration. It is a copy of the other device's sts_sources_valid register. The register is part of the protection mechanism.	
30		Bits (7:6) Reference sources SEC2:SEC1, Bits (5:0) Unused, set to 0.	11111111
31		Bits (7:5) Unused. Bits 4 Reference sources SEC4. Bit 3 Unused, set to 0. Bit 2 Reference sources SEC3 Bits (1:0) Unused, set to 0.	XX111111
32	cnfg_operating_mode	This register is used to force the device into a desired operating state, represented by the binary values shown in Figure 10. Value 0 (hex) allows the control state machine to operate automatically. Bits (7:3) Unused. Bits (2:0) Desired operating state (as per Figure 10).	XXXXX000
33	cnfg_ref_selection	This register is used to force the device to select a particular input reference source, irrespective of its priority. Writing to this register temporarily raises the selected input to priority " 1 ". Provided no other input is already programmed with priority " 1 ", and revertive mode is on, this source will be selected. Bits (7:4) Unused.	XXXX1111

Table 14 Register Description (cont...)

Addr. (Hex)	Register Name	Description	Default Value (Bin)
34	cnfg_mode	This register contains several individual configuration fields, as detailed below: Bit 7 $=1$ Auto 2 kHz Sync enable: External 2 kHz Sync will be enabled only when the source is locked to 6.48 MHz . Otherwise it will be disabled (default) $=0$ Auto 2 kHz Sync disable: The user controls this function using bit 3 of this register, as described below. Bit 6 =1 Phase Alarm Timeout enable: The phase alarm will timeout after 100 seconds (default). =0 Phase Alarm Timeout disable: The phase alarm will not timeout and must be reset by software. Bit 5 =1 Rising Clock Edge selected: The device will reference to the rising edge of the external 12.8 MHz crystal oscillator signal $=0$ Falling edge Edge selected: The device will reference to the falling edge of the external 12.8 MHz crystal oscillator signal (default). Bit 4 =1 Holdover offset enable: The device will adopt the Holdover offset value stored in the cnfg_holdover_offset register, in order to set the frequency in Holdover $=0$ Holdover offset disable: The device will ignore the value and Holdover will freeze the frequency of the DPLL on entering Holdover mode (default). Bit 3 $=1$ External 2 kHz Sync Enable: The device will align the phase of its internally generated Frame Sync signal (8 kHz) and Multi-Frame Sync signal (2 kHz) with that of the signal supplied to the Sync2K pin. The device should be locked to a 6.48 MHz output from another ACS8509. $=0$ External 2 kHz Sync Disable: The device will ignore the Sync2k pin. Bit 2 $=1$ SONET Mode: The device expects the input frequency of any input channel given the value '0001' in the cnfg_ref_source_frequency register to be 1544 kHz $=0$ SDH Mode: The device expects the input frequency of any input channel given the value "0001" in the cnfg_ref_source_frequency register to be 2048 kHz . At start-up or reset the bit value will be defaulted to the setting of pin SONSDHB. This setting can subsequently be altered by changing this bit value. Bit 1 = 1 Master Mode: The device will adopt the master mode and make the active decisions of which source to select, etc. This bit is writeable, but its default value is determined by the pin, MSTSLVB. = 0 Slave Mode: The device will adopt the slave mode and will follow the master device. At start-up or reset the bit value will be defaulted to the setting of pin MSTSLVB. This setting can subsequently be altered by changing this bit value. Bit 0 = 1 Revertive Mode: The device will switch to the highest priority source available shown in the sts_priority_table register, bits (7:4) $=0$ Non Revertive Mode: The device will retain the presently selected source (default).	11001000 $(\mathrm{MSTSLVB}=0)$ $(\mathrm{SONSDHB}=0)$ 11001100 $($ MSTSLVB=0) $(\mathrm{SONSDHB}=1)$ 11000010 $($ MSTSLVB $=1$) $($ SONSDHB=0) 11000110 (MSTSLVB=1) (SONSDHB=1)

Table 14 Register Description (cont...)

Addr. (Hex)	Register Name	Description	Default Value (Bin)
35	cnfg_T4	This controls DPLL _T4 (output on 04) and input source selection: Bits (7:6) Unused. Bits (3:0) Input source selection. The device will switch to the source shown in this field for the generation of the $T_{\text {OUT4 }}$ signal. If ' 0 ' it will select the highest priority active $\mathrm{T}_{\mathrm{IN} 1}$.	XX000000
37	cnfg_uPsel_pins	This read only register returns a value indicating the microprocessor type selected at power up or reset. This is set by the configuration of the UPSEL pins (pins 58-60). If the UPSEL pin configuration is changed while the device is operating no effect will take place, but this register will reflect that change, so indicating the configuration that will be implemented at the next power up or reset. The microprocessor type can be changed with the device operational, though register 7 F . Bits (7:3) Unused. Bit (2:0) Microprocessor type: 000 OFF (interface disabled), 001 EPROM, 010 MULTIPLEXED, 011 INTEL, 100 MOTOROLA, 101 SERIAL, 110 OFF (interface disabled), 111 OFF (interface disabled).	Bits(7:3)= XXXXX Bits(2:0)= UPSEL pin configuration

Table 14 Register Description (cont...)

Addr. (Hex)	Register Name	Description	Default Value (Bin)
38	cnfg_TO_output_enable	This register contains several individual configuration fields, as follows: Bit 4 $=1 \quad$ Output port 02 enabled (default), $=0 \quad$ Output port 02 disabled** - see register cnfg_TO_output_frequencies. Bit 3 Set to 0. Bit 2 $=1 \quad$ Output port 03 enabled ($19.44 \mathrm{MHz} *$) (default), $=0 \quad$ Output port 03 disabled**. Bits (1:0) Set to 0. Notes: * Defaults frequencies are changed to multiples of E1/T1 if the appropriate bit of the cnfg_control1 register is set to 1. For details, see Table 10. ** "Disabled" means that the output port holds a static logic value (the port is not Tristated).	00011111
39	cnfg_TO_output_ frequencies	This register holds the frequency selections for each output port, as detailed below.* For Dig1/Dig2 the frequency values are shown for SONET/SDH. They are selected via the SONET/SDH bits in register cnfg_TO_output_enable. Note: * The above frequencies are changed to multiples of E1/T1 if the appropriate bit of the cnfg_control1 register is set to 1 . For details, see Table 10.	0000100

Table 14 Register Description (cont...)

Addr. (Hex)	Register Name	Description	Default Value (Bin)
3A	cnfg_differential_ outputs	This register holds the frequency selections and the port-technology type for the differential output 01 as detailed below.	11000110
3 B	cnfg_bandwidth	This register contains information used to control the operation of the digital PLL. When bandwidth selection is set to automatic, the DPLL will use the acquisition bandwidth setting when out of lock, and the normal/locked bandwidth setting when in lock. When set to manual, the DPLL will always use the normal/locked bandwidth setting.	0111×101
	cnfg_nominal_frequency	This register holds a 16 bit unsigned integer allowing compensation for offset of the crystal oscillator from the nominal 12.8 MHz . See "Crystal Frequency Calibration" on page 8 . Default results in 0 ppm adjustment.	
3 C		Bits (7:0) cnfg_nominal_frequency bits (7:0).	10011001
3D		Bits (7:0) cnfg_nominal_frequency bits (15:8).	10011001

Table 14 Register Description (cont...)

Addr (Hex)	Register Name	Description	Default Value (Bin)
	cnfg_holdover_offset	This register holds a 19-bit signed integer, representing the holdover offset value, which can be used to set the holdover mode frequency when enabled via the holdover offset enabled bit in the cnfg_mode register.	
3 E		Bits (7:0) cnfg_holdover_offset bits (7:0).	00000000
3F		Bits (7:0) cnfg_holdover_offset bits (15:8).	00000000
40		Bit 7 $=1$ Auto Holdover Averaging enable. This enables the frequency average to be taken from 32 samples. One sample taken every 32 seconds, after the frequency has been confirmed to be in-band by the frequency monitors. This gives a 17 minute history of the currently locked to reference source for use in Holdover. (default). $=0$ Auto Holdover Averaging disabled. Bits (6:3) Unused. Bits (2:0) cnfg_holdover_offset bits (18:16).	1XXXX000
	cnfg_freq_limit	This register holds a 10 bit unsigned integer representing the pull-in range of the DPLL. It should be set according to the accuracy of crystal implemented in the application, using the following formula: Frequency range $\pm(\mathrm{ppm})=$ (cnfg_freq_limit $\times 0.0785)+0.01647$ or cnfg_freq_limit $=($ Frequency range $\pm(\mathrm{ppm})-0.01647) / 0.0785$. Default value is $\pm 9.3 \mathrm{ppm}$.	
41		Bits (7:0) cnfg_freq_limit bits (7:0).	01110101
42		Bits (7:2) Unused. Bits (1:0) cnfg_freq_limit bits (9:8).	XXXXXX00
	cnfg_interrupt_mask	Each bit, if set to 0 will disable the appropriate interrupt source in either the interrupt status register or the sts_T4_inputs register.	
43		cnfg_interrupt_mask bits (7:0): Bit 7 SEC2. Bit 6 SEC1. Bits (5:0) Set to 0.	11111111
44		cnfg_interrupt_mask bits (15:8): Bit 7 \quad Operating mode. Bit 6 Main Ref failed. Bit 5 Set to 0. Bit 4 SEC4. Bit 3 Set to 0. Bit 2 SEC3. Bits (1:0) Set to 0.	11111111
45		cnfg_interrupt_mask bits (20:16): Bits $(7: 5)$ Set to 0. Bit 4 T4 ref. Bits $(3: 0)$ Set to 0.	XXX11111

SEMTECH

Table 14 Register Description (cont...)

Addr. (Hex)	Register Name	Description	Default Value (Bin)
	cnfg_freq_divn	This 14-bit integer is used as the divisor for any input applied to SEC1 to SEC4 to get the phase locking frequency desired. Only active for inputs with the DivN bit set to " 1 ". This will cause the input frequency to be divided by $(N+1)$ prior to phase comparison, e.g. program N to: ((input freq)/ 8 kHz) -1 The reference_source_frequency bits should be set to reflect the closest spot frequency to the input frequency, but must be lower than the input frequency.	
46		Bits (7:0) cnfg_freq_divn bits (7:0).	00000000
47		Bits (7:6) Unused. Bits (5:0) cnfg_freq_divn bits (13:8).	XX000000
48	cnfg_monitors	This 7-bit register allows global configuration of monitors and control of phase buildout. Bit 7 Unused. Bit 6 =1 Enables value of the main_ref_failed interrupt to be driven out of pin TDO, =0 Disables value of the main_ref_failed interrupt from being driven out of pin TDO (default). Bit 5 =1 Enables ultra fast switching: Allows the DPLL to raise an inactivity alarm on the currently selected source after missing only a few cycles. See "Ultra Fast Switching" on page 37, $=0$ Normal operation (default). Bit 4 Unused. Bit 3 =1 Will freeze the output phase relationship with the current input to output phase offset, =0 Allows changes in input to output phase offset (Normal phase buildout mode) (default). Bit 2 $=1$ Enables phase build out (default), $=0$ DPLL will always lock to 0°. Bits (1:0) are for configuring frequency monitors- $00=$ off, $01=15 \mathrm{ppm}$ (default), others are reserved for future use.	X0000101
50	cnfg_activ_upper_ thresholdO	Bits (7:0) set the value in the leaky bucket that causes the activity alarm to be raised.	00000110
51	cnfg_activ_lower_ thresholdO	Bits $(7: 0)$ set the value in the leaky bucket that causes the activity alarm to be cleared.	00000100
52	cnfg_bucket_size0	Bits (7:0) set the maximum value that the leaky bucket can reach given an inactive input.	00001000

SEMTECH

Table 14 Register Description (cont...)

Addr. (Hex)	Register Name	Description	Default Value (Bin)
53	cnfg_decay_rate0	Bits (7:2)Unused Bits (1:0) control the leak rate of the leaky bucket. The fill-rate of the bucket is +1 for every 128 ms interval that has experienced some level of inactivity. The decay rate is programmable in ratios of the fill rate. The ratio can be set to $1: 1,2: 1,4: 1,8: 1$ by using values of 00, 01, 10, 11 respectively. However, these buckets are not "true" leaky buckets in nature. The bucket stops "leaking" when it is being filled. This means that the fill and decay rates can be the same $(00=1: 1)$ with the net effect that an active input can be recognized at the same rate as an inactive one.	XXXXXX01
54	cnfg_activ_upper_ threshold1	As for Reg. 50 but for bucket 1	00000110
55	cnfg_activ_lower_ threshold1	As for Reg. 51 but for bucket 1	00000100
56	cnfg_bucket_size1	As for Reg. 52 but for bucket 1	00001000
57	cnfg_decay_rate1	As for Reg. 53 but for bucket 1	XXXXXX01
58	cnfg_activ_upper_ threshold2	As for Reg. 50 but for bucket 2	00000110
59	cnfg_activ_lower_ threshold2	As for Reg. 51 but for bucket 2	00000100
5A	cnfg_bucket_size2	As for Reg. 52 but for bucket 2	00001000
5B	cnfg_decay_rate2	As for Reg. 53 but for bucket 2	XXXXXX01
5C	cnfg_activ_upper_ threshold3	As for Reg. 50 but for bucket 3	00000110
5D	cnfg_activ_lower_ threshold3	As for Reg. 51 but for bucket 3	00000100
5E	cnfg_bucket_size3	As for Reg. 52 but for bucket 3	00001000
5F	cnfg_decay_rate3	As for Reg. 53 but for bucket 3	XXXXXX01
7F	cnfg_uPsel	Bits (7:3) Unused. Bits (2:0) can be used to change the mode of the microprocessor interface. The interface will initially be set as the pins UPSEL (pins 58-60) - the pin set up can be read via register 37 (cnfg_uPsel_pins). At power up or reset the device will default to this setting. This register can be used to change the microprocessor mode after start up, supporting booting from EPROM and subsequently communicating via another mode. At start up the EPROM will down load the pre-programmed settings for all the registers, and as the last operation, action the change of interface with this last register. It is recommended that this function is only used for EPROM start up applications, as subsequent versions of this device may only allow operation in this way. The bits are defined in Table 11 or as given in Reg. 37 of the register map description.	$\begin{gathered} \operatorname{Bits}(7: 3)= \\ X X X X X \\ \text { Bits }(2: 0)= \end{gathered}$ Pin dependent

Selection of Input Reference Clock Source

Under normal operation, the input reference sources are selected automatically by an order of priority. But, for special circumstances, such as chip or board testing, the selection may be forced by configuration.

Automatic operation selects a reference source based on its pre-defined priority and its current availability. A table is maintained which lists all reference sources in the order of priority. This is initially downloaded into the ACS8509 via the microprocessor interface by the Network Manager, and is subsequently modified by the results of the ongoing quality monitoring. In this way, when all the defined sources are active and valid, the source with the highest programmed priority is selected but, if this source fails, the next-highest source is selected, and so on.

Restoration of repaired reference sources is handled carefully to avoid inadvertent disturbance of the output clock. The ACS8509 has two modes of operation; Revertive and Non-Revertive. In Revertive mode, if a revalidated (or newly validated) source has a higher priority than the reference source which is currently selected, a switchover will take place. Many applications prefer to minimize the clock switching events and choose Non-Revertive mode. In Non-Revertive mode, when a re-validated (or newly validated) source has a higher priority then the selected source will be maintained. The re-validation of the reference source will be flagged in the sts_sources_valid register and, if not masked, will generate an interrupt.

Selection of the re-validated source can only take place under software control - the software should briefly enable Revertive mode to affect a switchover to the higher priority source. If the selected source fails under these conditions the device will indicate that it is still locked to the failed reference. It will not select the higher priority source until instructed to do so by the software; by briefly setting the Revertive mode bit. When there is a reference available with higher priority than the selected reference, there will be NO change of reference source as long as the Non-Revertive mode remains on AND the device will remain indicating a locked state on the failed reference. This is the case even if there are lower priority references available or the currently selected reference fails. When the ONLY valid reference sources that are available have a lower priority than the selected reference, a failure of the selected reference will always trigger a switchover, regardless of whether Revertive or Non-Revertive mode has been chosen.

Also, in a Master/Slave redundancy-protection scheme, the Slave device(s) must follow the Master device. The alignment of the Master and Slave devices is part of the protection mechanism. The availability of each source is determined by a combination of local and remote monitoring of each source. Each input reference source supplied to each ACS8509 device is monitored locally and the results are made available to other devices.

Forced Control Selection

A configuration register, cnfg_ref_selection, controls both the choice of automatic or forced selection and the selection itself (when forced selection is required). The forced selection of an input reference source occurs when the cnfg_ref_selection variable contains a non-zero value, the value then representing the input port required to be selected. This is not the normal mode of operation, and the cnfg_ref_selection variable is defaulted to the all-one value on reset, thereby adopting the automatic selection of the reference source.

Automatic Control Selection

When an automatic selection is required, the cnfg_ref_selection register must be set to all zero or all one. The configuration registers, cnfg_ref_selection_priority, held in the $\mu \mathrm{P}$ port block, consists of 3,8 -bit registers organised as one 4 -bit register per input reference port. Each register holds a 4bit value which represents the desired priority of that particular port. Unused ports should be given the value, " 0000 " or " 1111 ", in the relevant register to indicate they are not to be included in the priority table. On power-up, or following a reset, the whole of the configuration file will be defaulted to the values defined by Table 6 . The selection priority values are all relative to each other, with lowervalued numbers taking higher priorities. Each reference source should be given a unique number, the valid values are 1 to 15 (dec). A value of 0 disables the reference source. However if two or more inputs are given the same priority number those inputs will be selected on a first in, first out basis.

If the first of two same priority number sources goes invalid the second will be switched in. If the first then becomes valid again, it becomes the second source on the first in, first out basis, and there will not be a switch. If a third source with the same priority number as the other two becomes valid, it joins the priority list on the same first in, first out basis. There is no implied priority based on the channel numbers.

The input port <SEC3> is for the connection of the synchronous clock of the $\mathrm{T}_{\text {OUTo }}$ output of the Master device (or the active-Slave device), to be used to align the $\mathrm{T}_{\text {OUT0 }}$ output with the Master (or active-Slave) device if this device is acting in a subordinate-Slave or subordinate-Master role.

Ultra Fast Switching

A reference source is normally disqualified after the leaky bucket monitor thresholds have been crossed. An option for a faster disqualification has been implemented, whereby if register 48H, bit 5 (Ultra Fast Switching), is set then a loss of activity of just a few reference clock cycles will set the "no activity alarm" and cause a reference switch. This can be chosen to cause an interrupt to occur instead of or as well as causing the reference switch. The sts_interrupts register 05 Hex Bit 14 (main_ref_failed) of the interrupt status register is used to flag inactivity on the reference that the device is locked to much faster than the activity monitors can support. If bit 6 of the cnfg_monitors register (flag ref loss on TDO) is set, then the state of this bit is driven onto the TDO pin of the device.

The flagging of the loss of the main reference failure on TDO is simply allowing the status of the sts_interrupt bit 14 to be reflected in the state of the TDO output pin. The pin will, therefore remain High until the interrupt is cleared. This functionality is not enabled by default so the usual JTAG functions can be used. When JTAG is normally used straight out of power-up, then this feature will have no bearing on the functionality. The TDO flagging feature will need to be disabled if JTAG is not enabled on powerup and the feature has since been enabled.

When the TDO output from the ACS8509 is connected to the TDI pin of the next device in the JTAG scan chain, the implementation should be such that a logic change caused by the action of the interrupt on the TDI input should not effect the operation when JTAG is not active.

Clock Quality Monitoring

Clock quality is monitored and used to modify the priority tables of the local and remote ACS8509 devices. The following parameters are monitored:

1. Activity (toggling)
2. Frequency (This monitoring is only performed when there is no irregular operation of the clock or loss of clock condition)

Any reference source which suffers a loss-of-signal, loss-of-activity, loss-of-regularity or clock out-of-band condition will be declared as unavailable.

Clock quality monitoring is a continuous process which is used to identify clock problems. There is a difference in dynamics between the selected clock and the other reference clocks. Anomalies occurring on non-selected reference sources affect only that source's suitability for selection, whereas anomalies occurring on the selected clock could have a detrimental impact on the accuracy of the output clock.

Anomalies, whether affecting signal purity or signal frequency, could induce jitter or frequency offsets in the output clock, leading to anomalous behavior. Anomalies on the selected clock, therefore, have to be detected as they occur and the phase locked loop must be temporarily isolated until the clock is once again pure. The clock monitoring process cannot be used for this because the high degree of accuracy required dictates that the process be slow.

To achieve the immediacy required by the phase locked loop requires an alternative mechanism. The phase locked loop itself contains appropriate circuitry, based around the phase detector, and isolates itself from the selected reference source as soon as a signal impurity is detected. It can likewise respond to frequency offsets outside the permitted range since these result in saturation of the phase detector. When the phase locked loop is isolated from the reference source, it is essentially operating in a Holdover state; this is preferable to feeding the loop with a standby source, either temporarily or permanently, since excessive phase excursions on the output clock are avoided. Anomalies detected by the phase detector are integrated in a leaky bucket accumulator. Occasional anomalies do not cause the accumulator to cross the alarm setting threshold, so the selected reference source is retained. Persistent anomalies cause the alarm setting threshold to be crossed and result in the selected reference source being rejected.

Figure 9 Inactivity and Irregularity Monitoring

Leaky Bucket Timing

The time taken (in seconds) to raise an inactivity alarm on a reference source that has previously been fully active (Leaky Bucket empty) will be:

$$
\text { (cnfg_upper_threshold_n) / } 8
$$

where n is the number (0 to 3) of the Leaky Bucket Configuration. If an input is intermittently inactive then this time can be longer. The default setting of cnfg_upper_threshold_n is 6, therefore the default time is 0.75 s.

The time taken (in seconds) to cancel the activity alarm on a previously completely inactive reference source is calculated, for a particular Leaky Bucket, as:

$$
\left[2^{(a)} \times(b-c)\right] / 8
$$

where:
a = cnfg_decay_rate_n
b = cnfg_bucket_size_n
c = cnfg_lower_threshold_n
(where $n=$ the number (0 to 3) of the relevant Leaky Bucket Configuration in each case).

Activity Monitoring

The ACS8509 has a combined inactivity and irregularity monitor. The ACS8509 uses a "leaky bucket"
accumulator, which is a digital circuit which mimics the operation of an analog integrator, in which input pulses increase the output amplitude but die away over time. Such integrators are used when alarms have to be triggered either by fairly regular defect events, which occur sufficiently close together, or by defect events which occur in bursts. Events which are sufficiently spread out should not trigger the alarm. By adjusting the alarm setting threshold, the point at which the alarm is triggered can be controlled. The point at which the alarm is cleared depends upon the decay rate and the alarm clearing threshold. On the alarm setting side, if several events occur close together, each event adds to the amplitude and the alarm will be triggered quickly; if events occur a little more spread out, but still sufficiently close together to overcome the decay, the alarm will be triggered eventually. If events occur at a rate which is not sufficient to overcome the decay, the alarm will not be triggered. On the alarm clearing side, if no defect events occur for a sufficient time, the amplitude will decay gradually and the alarm will be cleared when the amplitude falls below the alarm clearing threshold. The ability to decay the amplitude over time allows the importance of defect events to be reduced as time passes by. This means that, in the case of isolated events, the
alarm will not be set, whereas, once the alarm becomes set, it will be held on until normal operation has persisted for a suitable time (but if the operation is still erratic, the alarm will remain set). See Figure 9.

The "leaky bucket" accumulators are programmable for size, alarm set \& reset thresholds and decay rate. Each source is monitored over a 128 ms period. If, within a 128 ms period, an irregularity occurs that is not deemed to be due to allowable jitter/wander, then the accumulator is incremented. The accumulator will continue to increment up to the point that it reaches the programmed bucket size. The "fill rate" of the leaky bucket is, therefore, 8 units/second.

The "leak rate" of the leaky bucket is programmable to be in multiples of the fill rate ($\mathrm{x} 1, \mathrm{x0.5}, \mathrm{x0.25}$ and $\mathrm{x0.125} \mathrm{)} \mathrm{to}$ give a programmable leak rate from 8 units $/ \mathrm{sec}$ down to 1 unit/sec. A conflict between trying to "leak" at the same time as a "fill" is avoided by preventing a "leak" when a "fill" event occurs. Disqualification of a non-selected reference source is based on inactivity, or on an out of band result from the frequency monitors. The currently selected reference source can be disqualified for phase, frequency, inactivity or if the source is outside the DPLL lock range. If the currently selected reference source is disqualified, the next highest priority, active reference source is selected.

Frequency Monitoring

The ACS8509 performs frequency monitoring to identify reference sources which have drifted outside the acceptable frequency range of $\pm 16.6 \mathrm{ppm}$ (measured with respect to the output clock). The
sts_reference_sources out-of-band alarm for a particular reference source is raised when the reference source is outside the acceptable frequency range. The ACS8509 DPLL has a programmable frequency limit of $\pm 80 \mathrm{ppm}$. If the range is programmed to be $>16.6 \mathrm{ppm}$, the frequency monitors should be disabled so the input reference source is not automatically rejected as out of frequency range.

Modes of Operation

The ACS8509 has three primary modes of operation (Free-run, Locked and Holdover) supported by three secondary, temporary modes (Pre-Locked, Lost_Phase and Pre-Locked2). These are shown in the State Transition Diagram, Figure 10.

The ACS8509 can operate in Forced or Automatic control. On reset, the ACS8509 reverts to Automatic Control, where transitions between states are controlled completely automatically. Forced Control can be invoked by configuration, allowing transitions to be performed under external control. This is not the normal mode of operation, but is provided for special occasions such as testing, or where a high degree of hands-on control is required.

Free-run mode

The Free-run mode is typically used following a power-onreset or a device reset before network synchronization has been achieved. In the Free-run mode, the timing and synchronization signals generated from the ACS8509 are based on the Master clock frequency provided from the external oscillator and are not synchronized to an input reference source. The frequency of the output clock is a fixed multiple of the frequency of the external oscillator, and the accuracy of the output clock is equal to the accuracy of the Master clock.

The transition from Free-run to Pre-locked occurs when the ACS8509 selects a reference source.

Pre-Locked mode

The ACS8509 will enter the Locked state in a maximum of 100 seconds, as defined by GR-1244-CORE specification, if the selected reference source is of good quality. If the device cannot achieve lock within 100 seconds, it reverts to Free-run mode and another reference source is selected.

Locked mode

The Locked mode is used when an input reference source has been selected and the PLL has had time to lock. When the Locked mode is achieved, the output signal is in phase and locked to the selected input reference source. The selected input reference source is determined by the priority table.

When the ACS8509 is in Locked mode, the output frequency and phase follows that of the selected input reference source. Variations of the external crystal frequency have a minimal effect on the output frequency. Only the minimum to maximum frequency range is affected. Note that the term, "in phase", is not applied in the conventional sense when the ACS8509 is used as a frequency translator (e.g., when the input frequency is 2.048 MHz and the output frequency is 19.44 MHz) as
the input and output cycles will be constantly moving past each other; however, this variation will itself be cyclical over time unless the input and output are not locked.

Lost_Phase mode

Lost-phase mode is entered when the current phase error, as measured within the DPLL, is larger than a preset limit (see register 04, bits 5:3), as a result of a frequency or phase transient on the selected reference source.

This mode is similar in behavior to the Pre-locked or Pre-locked(2) modes, although in this mode the DPLL is attempting to regain lock to the same reference rather than attempt lock to a new reference.
If the DPLL cannot regain lock within 100 s , the source is disqualified, and one of the following transitions takes place:

1. Go to Pre-Locked(2);

- If a known-good standby source is available.

2. Go to Holdover;

- If no standby sources are available.

Holdover mode

The Holdover mode is used when the ACS8509 has been in Locked mode for long enough to acquire stable frequency data, but the final selected reference source has become unavailable and a replacement has not yet been qualified for selection. In Holdover mode, the ACS8509 provides the timing and synchronization signals to maintain the Network Element (NE), but they are not phase locked to any input reference source.

The timing is based on a stored value of the frequency ratio obtained during the last Locked mode period.
To allow for further development of the way the internal algorithm operates, and to allow for customized switching behavior, the switch to and from Holdover state may be controlled by external software.
The device must be set in either "manual" mode or "automatic" mode:

1. Register cnfg_mode bit holdover offset enable set high (manual mode). The Holdover frequency is determined by the value in register cnfg_holdover_offset. This is a 19 bit signed number, with a LSB resolution of 0.0003 ppm, which gives an adjustment range of $\pm 80 \mathrm{ppm}$. This value can be derived from a reading of the register sts_curr_inc_offset (addr OD, OC and 07) which gives, in
the same format, an indication of the current output frequency deviation, which would be read when the device is locked. If required, this value could be read by an external microcontroller and averaged over the time required. The averaged value could then be fed to the cnfg_holdover_offset register ready for setting of the averaged frequency value when the device enters Holdover mode. The sts_curr_inc_offset value is internally derived from the Digital Phase Locked Loop (DPLL) integral path value, which already represents a well averaged measure of the current frequency, depending on the loop bandwidth selected.
2. Register cnfg_mode bit holdover offset enable set low (automatic mode). In automatic control, the device can be run in one of two ways:
2.1 Register cnfg_holdover_offset register 40 bit 7 auto holdover averaging is set high. The value is averaged internally over 32 samples at 32 seconds apart, giving the average frequency over approximately the last 20 minutes. The proportional DPLL path is ignored so that recent signal disturbances do not affect the Holdover frequency value. If the device has been previously correctly locked, missing pulses in the input clock stream fed to the SETS IC are ignored, hence also avoiding any frequency disturbances to the output frequency value when an input clock source fails.
2.2 Register cnfg_holdover_offset register 40 bit 7 auto holdover averaging is set low. This simply freezes the DPLL at the current frequency (as reported by the sts_curr_inc_offset register). The proportional DPLL path is ignored so that recent signal disturbances do not affect the Holdover frequency value.

Automatic control with internal averaging (option 2.1) is the default condition. If the TCXO frequency is varying due to temperature fluctuations in the room, then the instantaneous value can be different from the average value, and then it may be possible to exceed the 0.05 ppm limit (depending on how extreme the temperature fluctuations are). It is advantageous to shield the TCXO to slow down frequency changes due to drift and external temperature fluctuations.

The frequency accuracy of Holdover mode has to meet the ITU-T, ETSI and Telcordia performance requirements. The performance of the external oscillator clock is critical in this mode, although only the frequency stability is important - the stability of the output clock in Holdover is directly related to the stability of the external oscillator.

ADVANCED COMMUNICATIONS

Pre-Locked(2) mode

This state is very similar to the Pre-Locked state. It is entered from the Holdover state when a reference source has been selected and applied to the phase locked loop. It is also entered if the device is operating in Revertive mode and a higher-priority reference source is restored.

Upon applying a reference source to the phase locked loop, the ACS8509 will enter the Locked state in a maximum of 100 seconds, as defined by GR-1244-CORE specification, if the selected reference source is of good quality.

If the device cannot achieve lock within 100 seconds, it reverts to Holdover mode and another reference source is selected.

Protection Facility

The ACS8509 supports redundancy protection. The primary functions of this include:

- Alignment of the priority tables of both Master and Slave ACS8509 devices so as to align the selection of reference sources of both Master and Slave ACS8509 devices.
- Alignment of the phases of the 8 kHz and 2 kHz clocks in both Master and Slave ACS8509 devices to within one cycle of the 77.76 MHz internal clock.

When two ACS8509 devices are to be used in a redundancy-protection scheme within an NE , one will be designated as the Master and the other as the Slave. It is expected that an NE will use the $\mathrm{T}_{\text {OUTO }}$ output for its internal operations because the $\mathrm{T}_{\text {OUT4 }}$ output is intended to feed an SSU/BITS system. An SSU/BITS will not be bothered by phase differences between signals arriving from different sources because it typically incorporates line build-out functions to absorb phase differences on reference inputs. This means that the phasing of the composite clocks between two ACS8509 devices do not have to be mutually-aligned.
The same is not true, however, of the $\mathrm{T}_{\text {OUto }}$ output signals ($01,02,03$, Frame clock and Multi-Frame clock). It is usually important to align the phases of all equivalent $\mathrm{T}_{\text {OUto }}$ signals generated by different sources so that switch-over from one device to another does not affect the internal operations of the NE. Both ACS8509 devices will produce the same signals, which will be routed around the NE to the various consumers (clock sinks). With the possible exception of a through-timing mode, the signals from the Master device will be used by all consumers,
unless the Master device fails, when each consumer will switch over to the signals generated by the Slave device.

Switchover to a new $\mathrm{T}_{\text {outo }}$ clock should be as hitless as possible. This requires the signals of both ACS8509 devices to be phase aligned at each consumer. Phase alignment requires frequency alignment. To ensure that both devices can generate output clocks locked to the same source, both devices are supplied with the same reference sources on the same input ports and will have identical priority tables.

Failures of selected reference sources will result in both ACS8509 devices making the same updates to their priority tables as availability information will be updated in both devices. Although, in principle, the priority tables will be the same if the same reference sources are used on the same input port on each device, in practice, this is only true if the reference sources actually arrive at each device - failures of a source seen only by one device and not by the other, such as could be caused, for example, by a backplane connector failure, would result in the priority tables becoming misaligned. It is thus necessary to force the priority tables to be aligned under normal operating conditions so that the devices can make the same decisions - this can be achieved by loading the availability seen by one device (via the sts_reference_sources register) into the cnfg_sts_remote_sources_valid register of the other device.

Another factor which could affect hit-less switching is the frequency of the local oscillator clock used by each ACS8509 device: these clocks are not mutually aligned and, whilst this has no impact on the frequency of the output clocks during locked mode, it could cause the output frequencies to diverge during Holdover mode if no action were taken to avoid it.

In order to maintain alignment of the output frequencies of each ACS8509 device even during Holdover, the Master device's 6.48 MHz output is fed into the Slave device on its SEC3 pin, whilst the Multi-Frame Sync (2 kHz) output is fed to the Sync2k input of the Slave. In this way, the Slave locks to the master's output and remains locked whilst the Master moves between operating states. Only when the Master fails does the Slave use its own reference inputs - should the Master have been in the Holdover state, the Slave device will see the same lack of reference sources and also enter the Holdover state. This scheme also provides a convenient way to phase-align all $\mathrm{T}_{\text {OUto }}$ output clocks in Master and Slave devices, and also to detect the failure of the Master device.

ACS8509 SETS

If a Master device fails, the Slave has to take over responsibility for the generation of the output clocks, including the 8 kHz and 2 kHz Frame and Multi-Frame clocks. The Slave device is also given responsibility for building the priority table and performing the reference switching operations. The Slave device, therefore, adopts a more active role when the Master has failed. The cnfg_mode register 34 (Hex) Bit 1 contains the Master/Slave control bit to determine the designation of the device.

To restore redundancy protection, the Master has to be repaired and replaced. When this occurs, the new Master cannot immediately adopt its normal role because it must not cause phase hits on the output clocks. It has, therefore, to adopt a subordinate role to the active Slave device, at least until such time as it has acquired alignment to the 8 kHz and 2 kHz frame and Multi-Frame clocks and the priority table of the Slave device; then, when a switch-back (restoration) is ordered, the Master can take over responsibility. These activities, in Master or Slave operation, are summarized in Table 15 and described in detail in Application Note AN-SETS-2.

Alignment of Priority Tables in Master and Slave ACS8509

Correct protection will only be achieved by connecting individual reference sources to the same input ports on each device and priority tables in each device must be aligned to each other.

The Master device must take account of the availability of each reference source seen by another device and a Slave device must adopt the same order of priority as the Master device (except that the Slave's highest-priority input is SEC3). Both devices monitor the reference sources and decide the availability of each source; if the failure of a reference source is seen by both devices, they will both update their priority tables - however, if the reference source failure is only seen by one device and not by both, the priority tables could get out of step: this could be catastrophic if it resulted in two devices choosing different reference sources since any slight differences in frequency variation over time (e.g. wander) would misalign the phase of the 8 kHz Frame and 2 kHz Multi-Frame clocks produced by the individual devices, resulting in phase hits on switchover. It is therefore important that the same priority table be built by each device, using the reference source availability seen by each device.

The monitoring of the reference sources performed by a Master ACS8509 results in a list of available sources being placed in a sts_valid_sources register. This information is used within the device as one of the masks used to build the device's priority table. The information is passed to the Slave device and used to configure the cnfg_sts_remote_sources_valid register so that it can use it as a mask in building its own priority tables. The information is passed between devices using the microprocessor port.

Alignment of the Selection of Reference Sources for Tout4 Generation in the Master and Slave ACS8509

As stated previously, there is no need to align the phases of the $\mathrm{T}_{\text {OUT } 4}$ outputs in Master and Slave devices. There is a need, however, to ensure that all devices select the same reference source. But, since there is no Holdover mode required for the generation of the $\mathrm{T}_{\text {OUT4 }}$ clock, and every reference source is continuously monitored within each device, it is permissible to rely on external intelligence to command a switchover to an alternative source should the selected one fail. The time delay involved in detecting the failure, indicating it to the outside and selecting a new source, will result only in the SSU/BITS entering its Holdover mode for a short time.

Alignment of the Phases of the $\mathbf{8 k H z}$ and $\mathbf{2 k H z}$ Clocks in both Master and Slave ACS8509

In addition to aligning the edges of the $\mathrm{T}_{\text {OUTO }}$ outputs of Master and Slave devices, it is necessary to align the edges of the Frame and Multi-Frame clocks. If this is not performed, frame alignment may be lost in distant equipment on switch-over to an alternative device, resulting in anomalous network operation of a very serious nature.

In accordance with the alignment mechanism used with the main $\mathrm{T}_{\text {OUto }}$ clock (described in the opening paragraphs of this section), whereby the 6.48 MHz output of the Master device is supplied to the Slave device, the alignment of both the 8 kHz and 2 kHz clocks is accomplished (they are already synchronous to the $\mathrm{T}_{\text {OUTO }}$ clocks) by feeding the 2 kHz clock of the Master device into the Slave device. The Multi-Frame Sync clock output of the Slave device is also fed to the Sync2K input of the Master device. Alignment of the Multi-Frame Sync input occurs only when cnfg_mode register, bit 3, address 34Hex External 2 kHz Sync Enable is set to 1.

SEMTECH

ADVANCED COMMUNICATIONS

JTAG

The JTAG connections on the ACS8509 allow a full boundary scan to be made. The JTAG implementation is fully compliant to IEEE 1149.1, with the following minor exceptions, and the user should refer to the standard for further information.

1. The output boundary scan cells do not capture data from the core, and so do not support INTEST. However this does not affect board testing.
2. In common with some other manufacturers, pin TRST is internally pulled low to disable JTAG by default. The standard is to pull high. The polarity of TRST is as the standard: TRST high to enable JTAG boundary scan mode, TRST low for normal operation.
3. The device does not support the optional tri-state capability (HIGHZ). This will be supported on the next revision of the device.

The JTAG timing diagram is shown in Figure 13.

PORB

The Power On Reset (PORB) pin resets the device if forced Low for a power on reset to be initiated. The reset is asynchronous, the minimum Low pulse width is 5 ns . Reset is needed to initialize all of the register values to their defaults. Asserting Reset is required at power on, and may be re-asserted at any time to restore defaults. This is implemented most simplistically by an external capacitor to GND along with the internal pull-up resistor. The ACS8509 is held in a reset state for 250 ms after the PORB pin has been pulled High. In normal operation PORB should be held High.

Table 15 Master-Slave Relationship

Ref_sources to Master ACS8509	Ref_sources to Slave ACS8509	Master ACS8509 Status	Slave ACS8509 Status	Master ACS8509	Slave ACS8509 Output	Comments
All good	All good	Good	Good	Locked (ref_x)	Locked to Master	Note (i)
Some Failed	Some others failed	Good	Good	Locked (ref_y)	Locked to Master	Note (i)
Good	Good	Good	Failed	Locked (ref_x)	Dead	
Good	Good	Failed	Good	Dead	Locked (ref_x)	Note (ii)
Good	Good	Failed	Failed	Dead	Dead	
Failed	Failed	Failed	Good	Holdover	Locked to Master	Note (iii)
Failed	Failed	Good	Failed	Holdover	Dead	
Failed	Failed	Failed	Good	Dead	Holdover	
Failed	Failed	Failed	Failed	Dead	Dead	

[^2]ACS8509 SETS

ADVANCED COMMUNICATIONS
FINAL
DATASHEET
Figure 10 Automatic Mode Control State Diagram

ACS8509 SETS

Electrical Specification

Maximum Ratings

Important Note: The "Absolute Maximum Ratings"are stress ratings only, and functional operation of the device at conditions other than those indicated in the "Operating Conditions" sections of this specification are not implied. Exposure to the absolute maximum ratings for an extended period may reduce the reliability or useful lifetime of the product

Table 16 Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units
Power Supply (dc voltage) VDD, VD+, VA1+, VA2+, VDD_DIFF	V_{DD}	-0.5	3.6	V
Input Voltage (non-supply pins)	$\mathrm{V}_{\text {IN }}$	-	5.5	V
Output Voltage (non-supply pins)	$\mathrm{V}_{\text {OUT }}$	-	5.5	V
Ambient Operating Temperature Range	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STOR }}$	-50	+150	${ }^{\circ} \mathrm{C}$

Operating Conditions

Table 17 Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Units
Power Supply (dc voltage) VDD, VD+, VA1+, VA2+, VDD_DIFF	V_{DD}	3.0	3.3	3.6	V
Power Supply (dc voltage) VDD5	$\mathrm{V}_{\mathrm{DD5}}$	3.0	$3.3 / 5.0$	5.5	V
Ambient Temperature Range	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$
Supply Current (Typical - one 19 MHz output)	I_{DD}	-	130	222	mA
Total Power Dissipation	$\mathrm{P}_{\text {TOT }}$	-	430	800	mW

DC Characteristics

Table 18 DC Characteristics: TTL Input Port
Across all operating conditions, unless otherwise stated

Parameter	Symbol	Minimum	Typical	Maximum	Units
V_{IN} High	V_{IH}	2.0	-	-	V
V_{IN} Low	V_{IL}	-	-	0.8	V
Input Current	I_{IN}	-	-	10	$\mu \mathrm{~A}$

ACS8509 SETS

ADVANCED COMMUNICATIONS
FINAL
DATASHEET
Table 19 DC Characteristics: TTL Input Port with Internal Pull-up
Across all operating conditions, unless otherwise stated

Parameter	Symbol	Minimum	Typical	Maximum	Units
$\mathrm{V}_{\text {IN }}$ High	V_{IH}	2	-	-	V
$\mathrm{V}_{\text {IN }}$ Low	V_{IL}	-	-	0.8	V
Pull-up Resistor	PU	30	-	80	$\mathrm{k} \Omega$
Input Current	I_{IN}	-	-	120	$\mu \mathrm{~A}$

Table 20 DC Characteristics: TTL Input Port with Internal Pull-down
Across all operating conditions, unless otherwise stated

Parameter	Symbol	Minimum	Typical	Maximum	Units
V_{IN} High	V_{IH}	2.0	-	-	V
V_{IN} Low	V_{IL}	-	-	0.8	V
Pull-down Resistor	PD	30	-	80	$\mathrm{k} \Omega$
Input Current	I_{IN}	-	-	120	$\mu \mathrm{~A}$

Table 21 DC Characteristics: TTL Output Port
Across all operating conditions, unless otherwise stated

Parameter	Symbol	Minimum	Typical	Maximum	Units
$\mathrm{V}_{\text {OUT }}$ Low $\left(\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}\right)$	V_{OL}	0	-	0.4	V
$\mathrm{~V}_{\text {OUT }}$ High $\left(\mathrm{I}_{\mathrm{OH}}=4 \mathrm{~mA}\right)$	V_{OH}	2.4	-	-	V
Drive Current	I_{D}	-	-	4	mA

Table 22 DC Characteristics: PECL Output Port
Across all operating conditions, unless otherwise stated

Parameter	Symbol	Minimum	Typical	Maximum	Units
PECL Output Low Voltage (Note (ii))	$V_{\text {OLPECL }}$	$V_{D D}-2.10$	-	$V_{D D}-1.62$	V
PECL Output High Voltage (Note (ii))	$V_{\text {OHPECL }}$	$\mathrm{V}_{\mathrm{DD}}-1.25$	-	$\mathrm{V}_{\mathrm{DD}}-0.88$	V
PECL Output Differential Voltage (Note (i))	$\mathrm{V}_{\text {ODPECL }}$	580	-	900	mV

Notes: (i) Assuming a differential input voltage of at least 100 mV .
(ii) With 50Ω load on each pin to $V_{D D}-2 V$, i.e. 82Ω to $G N D$ and 130Ω to $V_{D D}$.

Figure 11 Recommended Line Termination for PECL Output Port

Table 23 DC Characteristics: LVDS Output Port
Across all operating conditions, unless otherwise stated

Parameter	Symbol	Minimum	Typical	Maximum	Units
LVDS Output High Voltage (Note (i))	$\mathrm{V}_{\text {OHLVDS }}$	-	-	1.585	V
LVDS Output Low Voltage (Note (i))	$\mathrm{V}_{\text {OLLVDS }}$	0.885	-	-	V
LVDS Differential Output Voltage	$\mathrm{V}_{\text {ODLVDS }}$	250	-	450	mV
LVDS Change in Magnitude of Differential Output Voltage for complementary States (Note (i))	$\mathrm{V}_{\text {DOSLVDS }}$	-	-	25	mV
LVDS Output Offset Voltage Temperature $=25^{\circ} \mathrm{C}$ (Note (i))	$\mathrm{V}_{\text {OSLVDS }}$	1.125	-	1.275	V

Note: (i) With 100Ω load between the differential outputs.

Figure 12 Recommended Line Termination for LVDS Output Port

Table 24 DC Characteristics: Output Jitter Generation (Test Definition G.813)
Across all operating conditions unless otherwise stated
Output jitter generation measured over 60 seconds interval, $\mathrm{UI}_{\mathrm{p}-\mathrm{p}}$ max measured using Vectron 666412.8 MHz
TCXO on ICT Flexacom +10 MHz reference from Wavetek 905.

Test Definition	Filter used	Ul Spec	Ul Measurement on ACS8509
G813 ${ }^{[11]}$ for 155 MHz option 1	500 Hz to 1.3 MHz	$\mathrm{UI}_{\mathrm{p}-\mathrm{p}}=0.5$	0.058 (Note (ii))
G813 ${ }^{[11]}$ for 155 MHz option 1	65 kHz to 1.3 MHz	$\mathrm{UI}_{\mathrm{p}-\mathrm{p}}=0.1$	0.048 (Note (iii) 0.048 (Note (ii))
G813 ${ }^{[11]}$ for 155 MHz option 2	12 kHz to 1.3 MHz	$U \mathrm{U}_{\mathrm{p}-\mathrm{p}}=0.1$	$\begin{aligned} & 0.053 \text { (Note (iv)) } \\ & 0.053 \text { (Note (v)) } \end{aligned}$
			0.058 (Note (vi))
			0.053 (Note (ii)) 0.058 (Note (iii))
			$\begin{array}{\|l} 0.057 \text { (Note (viii)) } \\ 0.055 \text { (Note (ix)) } \end{array}$
			$\begin{array}{\|l} 0.057(\text { Note (x)) } \\ 0.057 \text { (Note (xi)) } \end{array}$
			0.057 (Note (xii)) 0.053 (Note (xiii))
G813 ${ }^{[11]}$ and G812 ${ }^{[10]}$ for 2.048 MHz option 1	20 Hz to 100 kHz	$\mathrm{UI} \mathrm{p}_{\mathrm{p}}=0.05$	0.046 (Note (xiv))

Table 25 DC Characteristics: Output Jitter Generation (Test Definition G812)
Across all operating conditions unless otherwise stated
Output jitter generation measured over 60 seconds interval, UI p-p max measured using Vectron 666412.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.

Test Definition	Filter used	UI Spec	UI Measurement on ACS8509
G812 $^{[10]}$ for 1.544 MHz	10 Hz to 40 kHz	$\mathrm{UI}_{\mathrm{p}-\mathrm{p}}=0.05$	$0.036($ Note (xiv))
G812 $^{[10]}$ for 155.52 MHz electrical	500 Hz to 1.3 MHz	$\mathrm{UI}_{\mathrm{p}-\mathrm{p}}=0.5$	$0.058($ Note (xv))
G812 $^{[10]}$ for 2.048 MHz	65 Hz to 1.3 MHz	$\mathrm{UI}_{\mathrm{p}-\mathrm{p}}=0.075$	$0.048($ Note (xv))

Table 26 DC Characteristics: Output Jitter Generation (Test Definition ETS-300-462-3)
Across all operating conditions unless otherwise stated
Output jitter generation measured over 60 seconds interval, UI ${ }_{p-p}$ max measured using Vectron 666412.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.

Test Definition	Filter used	Ul Spec	UI Measurement on ACS8509
ETS-300-462-3 ${ }^{[3]}$ for 2.048 MHz SEC	20 Hz to 100 kHz	$\mathrm{UI}_{\mathrm{p}-\mathrm{p}}=0.5$	0.046 (Note (xiv))
ETS-300-462-3 ${ }^{[3]}$ for 2.048 MHz SEC (Filter spec 49 Hz to 100 kHz)	20 Hz to 100 kHz	$\mathrm{UI}_{\mathrm{p}-\mathrm{p}}=0.2$	0.046 (Note (xiv))
ETS-300-462-3 ${ }^{[3]}$ for 2.048 MHz SSU	20 Hz to 100 kHz	$\mathrm{UI}_{\mathrm{p}-\mathrm{p}}=0.05$	0.046 (Note (xiv))
ETS-300-462-3 ${ }^{[3]}$ for 155.52 MHz	500 Hz to 1.3 MHz	$\mathrm{UI}_{\mathrm{p}-\mathrm{p}}=0.5$	0.058 (Note (xv))
ETS-300-462-3 ${ }^{[3]}$ for 155.52 MHz	65 kHz to 1.3 MHz	$U \mathrm{U}_{\mathrm{p}-\mathrm{p}}=0.1$	0.048 (Note (xv))

Table 27 DC Characteristics: Output Jitter Generation (Test Definition GR-253-CORE)
Across all operating conditions unless otherwise stated
Output jitter generation measured over 60 seconds interval, $\mathrm{UI}_{\mathrm{p}-\mathrm{p}}$ max measured using Vectron 666412.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.

Test Definition	Filter used	UI Spec	UI Measurement on ACS8509
GR-253-CORE ${ }^{[17]}$ net $\mathrm{i} / \mathrm{f}, 51.84 \mathrm{MHz}$	100 Hz to 0.4 MHz	$\mathrm{UI}_{\mathrm{p}-\mathrm{p}}=1.5$	0.022 (Note (xv))
GR-253-CORE ${ }^{[17]}$ net i/f, 51.84 MHz (Filter spec 20 kHz to 400 Hz)	18 kHz to 0.4 MHz	$\mathrm{U} \mathrm{I}_{\mathrm{p}-\mathrm{p}}=0.15$	0.019 (Note (xv))
GR-253-CORE ${ }^{[17]}$ net $\mathrm{i} / \mathrm{f}, 155.52 \mathrm{MHz}$	500 Hz to 1.3 MHz	$U \mathrm{I}_{\mathrm{p}-\mathrm{p}}=1.5$	0.058 (Note (xv))
GR-253-CORE ${ }^{[17]}$ net $\mathrm{i} / \mathrm{f}, 155.52 \mathrm{MHz}$	65 kHz to 1.3 MHz	$\mathrm{Ul}_{\mathrm{p}-\mathrm{p}}=0.15$	0.048 (Note (xv))
GR-253-CORE ${ }^{[17]}$ cat II elect $\mathrm{i} / \mathrm{f}, 155.52 \mathrm{MHz}$	12 kHz to 400 kHz	$\mathrm{UI} \mathrm{p}_{\mathrm{p}}=0.1$	0.057 (Note (xv))
		$\mathrm{Ul}_{\mathrm{rms}}=0.1$	0.006 (Note (xv))
GR-253-CORE ${ }^{[17]}$ cat II elect i/f, 51.84 MHz	12 kHz to 1.3 MHz	$\mathrm{UI}_{\mathrm{p}-\mathrm{p}}=0.1$	0.017 (Note (xv))
		$\mathrm{Ul}_{\mathrm{rms}}=0.01$	0.003 (Note (xv))
GR-253-CORE ${ }^{[17]}$ DS1 i/f, 1.544 MHz	10_Hz to 40 kHz	$\mathrm{UI}_{\mathrm{p}-\mathrm{p}}=0.1$	0.036 (Note (xiv))
		$\mathrm{UI}_{\mathrm{rms}}=0.01$	0.0055 (Note (xiv))

SEMTECH

Table 28 DC Characteristics: Output Jitter Generation (Test Definition AT\&T 62411)
Across all operating conditions unless otherwise stated
Output jitter generation measured over 60 seconds interval, $\mathrm{Ul}_{\mathrm{p}-\mathrm{p}}$ max measured using Vectron 666412.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.

Test Definition	Filter used	UI Spec	Ul Measurement on ACS8509
AT\&T $62411^{[2]}$ for $1.544 ~ M H z$ (Filter spec 10 Hz to 8 kHz)	10 Hz to 40 kHz	$\mathrm{UI}_{\mathrm{rms}}=0.02$	$0.0055($ Note (xiv))
AT\&T $62411^{[2]}$ for 1.544 MHz	10 Hz to 40 kHz	$\mathrm{UI}_{\mathrm{rms}}=0.025$	$0.0055($ Note (xiv))
AT\&T $62411^{[2]}$ for 1.544 MHz	10 Hz to 40 kHz	$\mathrm{UI}_{r m s}=0.025$	$0.0055($ Note (xiv))
AT\&T $62411^{[2]}$ for 1.544 MHz	Broadband	$\mathrm{UI}_{\mathrm{rms}}=0.05$	$0.0055($ Note (xiv))

Table 29 DC Characteristics: Output Jitter Generation (Test Definition G.742)
Across all operating conditions unless otherwise stated
Output jitter generation measured over 60 seconds interval, $\mathrm{UI}_{\mathrm{p}-\mathrm{p}}$ max measured using Vectron 666412.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.

Test Definition	Filter used	UI Spec	UI Measurement on ACS8509
G-742 ${ }^{[8]}$ for 2.048 MHz	DC to 100 kHz	$\mathrm{U} \mathrm{I}_{\mathrm{p}-\mathrm{p}}=0.25$	0.047 (Note (xiv))
G-742 ${ }^{[8]}$ for 2.048 MHz (Filter spec 18 kHz to 100 kHz)	20 Hz to 100 kHz	$\mathrm{Ul}_{\mathrm{p}-\mathrm{p}}=0.05$	0.046 (Note (xiv))
G-742 ${ }^{[8]}$ for 2.048 MHz	20 Hz to 100 kHz	$\mathrm{U} \mathrm{I}_{\mathrm{p}-\mathrm{p}}=0.05$	0.046 (Note (xiv))

Table 30 DC Characteristics: Output Jitter Generation (Test Definition GR-499-CORE)
Across all operating conditions unless otherwise stated
Output jitter generation measured over 60 seconds interval, $\mathrm{UI}_{\mathrm{p}-\mathrm{p}}$ max measured using Vectron 666412.8 MHz
TCXO on ICT Flexacom +10 MHz reference from Wavetek 905.

Test Definition	Filter used	UI Spec	UI Measurement on ACS8509
GR-499-CORE ${ }^{[18]}$ \& G824 ${ }^{[14]}$ for 1.544 MHz	10 Hz to 40 kHz	$\mathrm{Ul}_{\mathrm{p}-\mathrm{p}}=5.0$	0.036 (Note (xiv))
GR-499-CORE ${ }^{[18]} \& ~ G 824^{[14]}$ for 1.544 MHz (Filter spec 8 kHz to 40 kHz)	10 Hz to 40 kHz	$U \mathrm{U}_{\mathrm{p}-\mathrm{p}}=0.1$	0.036 (Note (xiv))
GR-499-CORE ${ }^{[18]}$ for 1.544 MHz	>10 Hz	$\mathrm{U} \mathrm{I}_{\mathrm{p}-\mathrm{p}}=0.05$	0.036 (Note (xiv))

ADVANCED COMMUNICATIONS

Notes for Tables 24 to 30

Notes: (i) Filter used is that defined by test definition unless otherwise stated
(ii) 5 Hz bandwidth, 19.44 MHz direct lock.
(iii) 5 Hz bandwidth, 8 kHz lock.
(iv) 20 Hz bandwidth, 19.44 MHz direct lock.
(v) 20 Hz bandwidth, 8 kHz lock.
(vi) 10 Hz bandwidth, 19.44 MHz direct lock.
(vii) 10 Hz bandwidth, 8 kHz lock.
(viii) 2.5 Hz bandwidth, 19.44 MHz direct lock.
(ix) 2.5 Hz bandwidth, 8 kHz lock.
(x) 1.2 Hz bandwidth, 19.44 MHz direct lock.
(xi) 1.2 Hz bandwidth, 8 kHz lock.
(xii) 0.6 Hz bandwidth, 19.44 MHz direct lock.
(xiii) 0.6 Hz bandwidth, 8 kHz lock.
(xiv) 5 Hz bandwidth, 8 kHz lock, 2.048 MHz input.
(xv) 5 Hz bandwidth, 8 kHz lock, 19.44 MHz input.

Figure 13 JTAG Timing

Table 31 JTAG Timing (for use with Figure 13)

Parameter	Symbol	Minimum	Typical	Maximum	Units
Cycle Time	$t_{\text {CYC }}$	50	-	-	ns
TMS/TDI to TCK rising edge time	$\mathrm{t}_{\text {SUR }}$	3	-	-	ns
TCK rising to TMS/TDI hold time	$\mathrm{t}_{\text {HT }}$	23	-	-	ns
TCK falling to TDO valid	$\mathrm{t}_{\text {DOD }}$	-	-	5	ns

ACS8509 SETS

ADVANCED COMMUNICATIONS
FINAL
DATASHEET

Motorola Mode

In MOTOROLA mode, the device is configured to interface with a microprocessor using a 680x0 type bus as parallel data + address. Figure 15 and Figure 16 show the timing diagrams of read and write accesses for this mode.

Figure 15 Read Access Timing in MOTOROLA Mode

F8110D_007ReadAccMotor_01
Table 32 Read Access Timing in MOTOROLA Mode (for use with Figure 15)

Symbol	Parameter	MIN	TYP	MAX
$\mathrm{t}_{\text {su1 }}$	Setup A valid to $\mathrm{CSB}_{\text {falling edge }}$	0 ns	-	-
$\mathrm{t}_{\text {su2 }}$	Setup WRB valid to $\mathrm{CSB}_{\text {falling edge }}$	0 ns	-	-
$\mathrm{t}_{\mathrm{d} 1}$	Delay $\mathrm{CSB}_{\text {falling edge }}$ to AD valid	-	-	177 ns
$\mathrm{t}_{\mathrm{d} 2}$	Delay $\mathrm{CSB}_{\text {falling edge }}$ to DTACK ${ }_{\text {rising edge }}$	-	-	13 ns
$\mathrm{t}_{\mathrm{d} 3}$	Delay $\mathrm{CSB}_{\text {rising edge }}$ to AD high-Z	-	-	0 ns
$\mathrm{t}_{\mathrm{d} 4}$	Delay $\mathrm{CSB}_{\text {rising edge }}$ to RDY high-Z	-	-	7 ns
$\mathrm{t}_{\mathrm{pw} 1}$	CSB Low time	$485 \mathrm{~ns}{ }^{(\mathrm{i})}$	-	-
$\mathrm{t}_{\mathrm{pw} 2}$	RDY High time	310 ns	-	472 ns
$t_{\text {n1 }}$	Hold A valid after $\mathrm{CSB}_{\text {rising edge }}$	0 ns	-	-
$\mathrm{t}_{\mathrm{h} 2}$	Hold WRB valid after $\mathrm{CSB}_{\text {rising edge }}$	0 ns	-	-
t_{h}	Hold CSB Low after RDY falling edge	0 ns	-	-
t_{p}	Time between consecutive accesses (CSB $_{\text {rising edge }}$ to $\mathrm{CSB}_{\text {falling edge }}$)	320 ns	-	-

Note: (i) Timing with RDY. If RDY not used, $t_{p w 1}$ becomes 178 ns .

ACS8509 SETS

F8110D_008WriteAccMotor_01

Table 33 Write Access Timing in MOTOROLA Mode (for use with Figure 16)

Symbol	Parameter	MIN	TYP	MAX
$\mathrm{t}_{\text {su1 }}$	Setup A valid to $\mathrm{CSB}_{\text {falling edge }}$	0 ns	-	-
$\mathrm{t}_{\text {su2 }}$	Setup WRB valid to $\mathrm{CSB}_{\text {falling edge }}$	0 ns	-	-
$\mathrm{t}_{\text {su3 }}$	Setup AD valid before $\mathrm{CSB}_{\text {rising edge }}$	3 ns	-	-
$\mathrm{t}_{\mathrm{d} 2}$	Delay $\mathrm{CSB}_{\text {falling edge }}$ to $\mathrm{RDY}_{\text {rising edge }}$	-	-	13 ns
$\mathrm{t}_{\mathrm{d} 4}$	Delay CSB $_{\text {rising edge }}$ to RDY High-Z	-	-	7 ns
$\mathrm{t}_{\mathrm{pw} 1}$	CSB Low time	$485 \mathrm{~ns}^{(\mathrm{i})}$	-	-
$t_{\text {pw } 2}$	RDY High time	310 ns	-	472 ns
$t_{\text {h1 }}$	Hold A valid after $\mathrm{CSB}_{\text {rising edge }}$	3 ns	-	-
$t_{\text {h2 }}$	Hold WRB Low after CSB $_{\text {rising edge }}$	0 ns	-	-
t_{h}	Hold CSB Low after RDY ${ }_{\text {falling edge }}$	0 ns	-	-
$t_{\text {n4 }}$	Hold AD valid after $\mathrm{CSB}_{\text {rising edge }}$	4 ns	-	-
t_{p}	Time between consecutive accesses (CSB $_{\text {rising edge }}$ to $\left.\mathrm{CSB}_{\text {falling edge }}\right)$	320 ns	-	-

Note: (i) Timing with RDY. If RDY not used, $t_{p w 1}$ becomes 178 ns .

ACS8509 SETS

ADVANCED COMMUNICATIONS

FINAL
DATASHEET

Intel Mode

In Intel mode, the device is configured to interface with a microprocessor using a 80x86 type bus as parallel data + address. Figure 17 and Figure 18 show the timing diagrams of read and write accesses for this mode.

Figure 17 Read Access Timing in INTEL Mode

F8110D_009ReadAccIntel_01
Table 34 Read Access Timing in INTEL Mode (for use with Figure 17)

Symbol	Parameter	MIN	TYP	MAX
$\mathrm{t}_{\text {su1 }}$	Setup A valid to $\mathrm{CSB}_{\text {falling edge }}$	0 ns	-	-
$\mathrm{t}_{\text {su2 }}$	Setup $\mathrm{CSB}_{\text {falling edge }}$ to $\mathrm{RDB}_{\text {falling edge }}$	0 ns	-	-
$\mathrm{t}_{\mathrm{d} 1}$	Delay $\mathrm{RDB}_{\text {falling edge }}$ to $A D$ valid	-	-	177 ns
$\mathrm{t}_{\mathrm{d} 2}$	Delay $\mathrm{CSB}_{\text {falling edge }}$ to RDY active	-	-	13 ns
$\mathrm{t}_{\mathrm{d} 3}$	Delay $\mathrm{RDB}_{\text {falling edge }}$ to $\mathrm{RDY}_{\text {falling edge }}$	-	-	14 ns
$\mathrm{t}_{\mathrm{d} 4}$	Delay $\mathrm{RDB}_{\text {rising edge }}$ to AD high-Z	-	-	10 ns
$\mathrm{t}_{\mathrm{d} 5}$	Delay $\mathrm{CSB}_{\text {rising edge }}$ to RDY high-Z	-	-	9 ns
$\mathrm{t}_{\mathrm{pw} 1}$	RDB Low time	$486 \mathrm{~ns}{ }^{\text {(i) }}$	-	-
$\mathrm{t}_{\mathrm{pw} 2}$	RDY Low time	310 ns	-	472 ns
$t_{\text {h1 }}$	Hold A valid after $\mathrm{RDB}_{\text {rising edge }}$	0 ns	-	-
$t_{\text {n } 2}$	Hold CSB Low after RDB ${ }_{\text {rising edge }}$	0 ns	-	-
t_{h}	Hold RDB Low after RDY ${ }_{\text {rising edge }}$	0 ns	-	-
t_{p}	Time between consecutive accesses ($\mathrm{RDB}_{\text {rising edge }}$ to $\mathrm{RDB}_{\text {falling edge }}$, or $\mathrm{RDB}_{\text {rising edge }}$ to $\mathrm{WRB}_{\text {falling edge) }}$	320 ns	-	-

Note: (i) Timing with RDY. If RDY not used, $t_{p w 1}$ becomes 180 ns .

ACS8509 SETS

ADVANCED COMMUNICATIONS
FINAL
DATASHEET
Figure 18 Write Access Timing in INTEL Mode

F8110D_010WriteAcclntel_01
Table 35 Write Access Timing in INTEL Mode (for use with Figure 18)

Symbol	Parameter	MIN	TYP	MAX
$\mathrm{t}_{\text {su1 }}$	Setup A valid to $\mathrm{CSB}_{\text {falling edge }}$	0 ns	-	-
$\mathrm{t}_{\text {su2 }}$	Setup $\mathrm{CSB}_{\text {falling edge }}$ to $\mathrm{WRB}_{\text {falling edge }}$	0 ns	-	-
$\mathrm{t}_{\text {su3 }}$	Setup AD valid before $\mathrm{WRB}_{\text {rising edge }}$	3 ns	-	-
$\mathrm{t}_{\mathrm{d} 2}$	Delay $\mathrm{CSB}_{\text {falling edge }}$ to RDY active	-	-	13 ns
$\mathrm{t}_{\text {d }}$	Delay $\mathrm{WRB}_{\text {falling edge }}$ to $\mathrm{RDY}_{\text {falling edge }}$	-	-	14 ns
$\mathrm{t}_{\text {d }}$	Delay CSB $_{\text {rising edge }}$ to RDY high-Z	-	-	9 ns
$\mathrm{t}_{\mathrm{pw} 1}$	WRB Low time	$486 \mathrm{~ns}{ }^{(\mathrm{i})}$	-	-
$\mathrm{t}_{\mathrm{pw} 2}$	RDY Low time	310 ns	-	472 ns
$t_{\text {h1 }}$	Hold A valid after $\mathrm{WRB}_{\text {rising edge }}$	$170 \mathrm{~ns}^{\text {(ii) }}$	-	-
$t_{\text {n } 2}$	Hold CSB Low after WRB rising edge	0 ns	-	-
t_{h}	Hold WRB Low after RDY ${ }_{\text {rising edge }}$	0 ns	-	-
t_{h}	Hold AD valid after $\mathrm{WRB}_{\text {rising edge }}$	4 ns	-	-
t_{p}	Time between consecutive accesses $\left(\mathrm{WRB}_{\text {rising edge }}\right.$ to $\mathrm{WRB}_{\text {falling edge }}$, or $\mathrm{WRB}_{\text {rising edge }}$ to $\mathrm{RDB}_{\text {falling edge) }}$	320 ns	-	-

Notes: (i) Timing with RDY. If RDY not used, $t_{p w 1}$ becomes 180 ns.
(ii) Timing if $t_{h 2}$ is greater than 170 ns , otherwise 5 ns after CSB rising edge.

ACS8509 SETS

ADVANCED COMMUNICATIONS
FINAL
DATASHEET

Multiplexed Mode

In MULTIPLEXED mode, the device is configured to interface with a microprocessor using a multiplexed address/data bus. Figures 19 and 20 show the timing diagrams of read and write accesses.

Figure 19 Read Access Timing in MULTIPLEXED Mode

F8110D_011ReadAccMultiplex_01
Table 36 Read Access Timing in MULTIPLEXED Mode (for use with Figure 19)

Symbol	Parameter	MIN	TYP	MAX
$\mathrm{t}_{\text {su1 }}$	Setup AD address valid to $\mathrm{ALE}_{\text {falling edge }}$	2 ns	-	-
$\mathrm{t}_{\text {su2 }}$	Setup $\mathrm{CSB}_{\text {falling edge }}$ to $\mathrm{RDB}_{\text {falling edge }}$	0 ns	-	-
$\mathrm{t}_{\mathrm{d} 1}$	Delay $\mathrm{RDB}_{\text {falling edge }}$ to AD data valid	-	-	177 ns
$\mathrm{t}_{\mathrm{d} 2}$	Delay $\mathrm{CSB}_{\text {falling edge }}$ to RDY active	-	-	13 ns
$\mathrm{t}_{\mathrm{d} 3}$	Delay $\mathrm{RDB}_{\text {falling edge }}$ to $\mathrm{RDY}_{\text {falling edge }}$	-	-	15 ns
$\mathrm{t}_{\mathrm{d} 4}$	Delay $\mathrm{RDB}_{\text {rising edge }}$ to AD data high-Z	-	-	9 ns
$t_{\text {d5 }}$	Delay $\mathrm{CSB}_{\text {rising edge }}$ to RDY high-Z	-	-	10 ns
$\mathrm{t}_{\mathrm{pw} 1}$	RDB Low time	$487 \mathrm{~ns}^{(\mathrm{i})}$	-	-
$\mathrm{t}_{\mathrm{pw} 2}$	RDY Low time	310 ns	-	472 ns
$t_{\text {pw3 }}$	ALE High time	2 ns	-	-
$t_{\text {h1 }}$	Hold AD address valid after ALE $_{\text {falling edge }}$	3 ns	-	-
$t_{\text {h2 }}$	Hold CSB Low after RDB ${ }_{\text {rising edge }}$	0 ns	-	-
$t_{\text {n }}$	Hold RDB Low after RDY ${ }_{\text {rising edge }}$	0 ns	-	-
$\mathrm{t}_{\mathrm{p} 1}$	Time between ALE $_{\text {falling edge }}$ and $\mathrm{RDB}_{\text {falling edge }}$	0 ns	-	-
$\mathrm{t}_{\mathrm{p} 2}$	Time between consecutive accesses ($\mathrm{RDB}_{\text {rising edge }}$ to $\mathrm{ALE}_{\text {rising edge }}$)	320 ns	-	-

Note: (i) Timing with RDY. If RDY not used, $t_{p w 1}$ becomes 180 ns .

ACS8509 SETS

ADVANCED COMMUNICATIONS
FINAL
DATASHEET
Figure 20 Write Access Timing in MULTIPLEXED Mode

F8110D_012WriteAccMultiplex_01

Table 37 Write Access Timing in MULTIPLEXED Mode (For use with Figure 20)

Symbol	Parameter	MIN	TYP	MAX
$\mathrm{t}_{\text {su1 }}$	Set up AD address valid to $\mathrm{ALE}_{\text {falling edge }}$	2 ns	-	-
$\mathrm{t}_{\text {su2 }}$	Set up $\mathrm{CSB}_{\text {falling edge }}$ to $\mathrm{WRB}_{\text {falling edge }}$	0 ns	-	-
$\mathrm{t}_{\text {su3 }}$	Set up AD data valid to $\mathrm{WRB}_{\text {rising edge }}$	3 ns	-	-
$\mathrm{t}_{\mathrm{d} 2}$	Delay $\mathrm{CSB}_{\text {falling edge }}$ to RDY active	-	-	13 ns
$\mathrm{t}_{\mathrm{d} 3}$	Delay $\mathrm{WRB}_{\text {falling edge }}$ to $\mathrm{RDY}_{\text {falling edge }}$	-	-	15 ns
$t_{\text {d5 }}$	Delay CSB $_{\text {rising edge }}$ to RDY high-Z	-	-	9 ns
$\mathrm{t}_{\mathrm{pw} 1}$	WRB Low time	487 ns ${ }^{(\mathrm{i})}$	-	-
$\mathrm{t}_{\mathrm{pw} 2}$	RDY Low time	310 ns	-	472 ns
$t_{\text {pw3 }}$	ALE High time	2 ns	-	-
$t_{\text {h1 }}$	Hold AD address valid after ALE $_{\text {falling edge }}$	3 ns	-	-
$t_{\text {n2 }}$	Hold CSB Low after WRB ${ }_{\text {rising edge }}$	0 ns	-	-
$t_{n 3}$	Hold WRB Low after RDY ${ }_{\text {rising edge }}$	0 ns	-	-
$t_{n 4}$	AD data hold valid after $\mathrm{WRB}_{\text {rising edge }}$	4 ns	-	-
$t_{p 1}$	Time between ALE $_{\text {falling edge }}$ and $\mathrm{WRB}_{\text {falling edge }}$	0 ns	-	-
$\mathrm{t}_{\mathrm{p} 2}$	Time between consecutive accesses ($\mathrm{WRB}_{\text {rising edge }}$ to $\mathrm{ALE}_{\text {rising edge }}$)	320 ns	-	-

Note: (i) Timing with RDY. If RDY not used, $t_{p w 1}$ becomes 180 ns .

ACS8509 SETS

ADVANCED COMMUNICATIONS

Serial Mode

In Serial mode, the device is configured to interface with a serial microprocessor bus. The combined minimum High and Low times for SCLK define the maximum clock rate.

For Write access this is $2.77 \mathrm{MHz}(360 \mathrm{~ns})$. For Read access the maximum SCLK rate is slightly slower and is affected by the setting of CLKE, being either $2.0 \mathrm{MHz}(500 \mathrm{~ns}$) or 1 MHz (1 us).

This mismatch in rates is caused by the sampling technique used to detect the end of the address field in Read mode. It takes up to 3 cycles of an internal 6.40 MHz clock to start the Read process following receipt of the final address bit. This is 468 ns. The Read data is then decoded and clocked out onto SDO directly using SCLK. With CLKE=1, the falling edge of SCLK is used to clock out the SDO. With CLKE=0, the rising edge of SCLK is used to clock out the SDO.

A minimum period of 500 ns (468 capture plus 32 decode) is required between the final address bit and clocking it out onto SDO. This means that to guarantee the correct operation of the Serial interface, with CLKE=0, SCLK has a maximum clock rate of 2 MHz . With CLKE=1, SCLK has a maximum clock rate of 1 MHz .

SCLK is not required to run between accesses (i.e., when $\operatorname{CSB}=1$). The following Figures show the timing diagrams for Write and Read access for this mode.

Figure 21 Read Access Timing in SERIAL Mode

CLKE $=0$; SDO data is clocked out on the rising edge of SCLK

ACS8509 SETS

ADVANCED COMMUNICATIONS
FINAL
DATASHEET
Table 38 Read Access Timing in SERIAL Mode (For use with Figure 21)

Symbol	Parameter	MIN	TYP	MAX
$\mathrm{t}_{\text {su1 }}$	Setup SDI valid to SCLK ${ }_{\text {rising }}$ edge	0 ns	-	-
$\mathrm{t}_{\text {su2 }}$	Setup $\mathrm{CSB}_{\text {falling edge }}$ to $\mathrm{SCLK}_{\text {rising edge }}$	160 ns	-	-
$\mathrm{t}_{\mathrm{d} 1}$	Delay SCLK ${ }_{\text {rising edge }}(S C L K$ falling edge for CLKE $=1$) to SDO valid	-	-	17 ns
$\mathrm{t}_{\mathrm{d} 2}$	Delay CSB $_{\text {rising edge }}$ to SDO high-Z	-	-	10 ns
$\mathrm{t}_{\mathrm{pw} 1}$	SCLK Low time $\begin{aligned} & \text { CLKE }=0 \\ & \text { CLKE }=1 \end{aligned}$	$\begin{aligned} & 250 \mathrm{~ns} \\ & 500 \mathrm{~ns} \end{aligned}$	-	-
$\mathrm{t}_{\mathrm{pw} 2}$	SCLK High time $\begin{aligned} & \text { CLKE }=0 \\ & \text { CLKE }=1 \end{aligned}$	$\begin{aligned} & 250 \mathrm{~ns} \\ & 500 \mathrm{~ns} \end{aligned}$	-	-
$t_{\text {h }}$	Hold SDI valid after SCLK ${ }_{\text {rising edge }}$	170 ns	-	-
$t_{\text {n2 }}$	Hold CSB Low after SCLK ${ }_{\text {rising edge }}$, for CLKE $=0$ Hold CSB Low after SCLK falling edge, for CLKE =1	5 ns	-	-
t_{p}	Time between consecutive accesses (CSB $_{\text {rising edge }}$ to $\mathrm{CSB}_{\text {falling edge }}$)	160 ns	-	-

Figure 22 Write Access Timing in SERIAL Mode

$$
\text { AD(0) }=\text { SDO Output not driven, pulled low by internal resistor }
$$

Table 39 Write Access Timing in SERIAL Mode (For use with Figure 22)

Symbol	Parameter	MIN	TYP	MAX
$\mathrm{t}_{\text {su1 }}$	Setup SDI valid to SCLK ${ }_{\text {rising }}$ edge	0 ns	-	-
$\mathrm{t}_{\text {su2 }}$	Setup $\mathrm{CSB}_{\text {falling edge }}$ to $\mathrm{SCLK}_{\text {rising edge }}$	160 ns	-	-
$t_{p w 1}$	SCLK Low time	180 ns	-	-
$\mathrm{t}_{\mathrm{pw} 2}$	SCLK High time	180 ns	-	-
$t_{\text {h1 }}$	Hold SDI valid after SCLK $_{\text {rising edge }}$	170 ns	-	-
$t_{\text {h2 }}$	Hold CSB Low after SCLK ${ }_{\text {rising edge }}$	5 ns	-	-
t_{p}	Time between consecutive accesses (CSB $_{\text {rising edge }}$ to $\mathrm{CSB}_{\text {falling edge }}$)	160 ns	-	-

ACS8509 SETS

ADVANCED COMMUNICATIONS
FINAL
DATASHEET

EPROM Mode

This mode is suitable for use with an EPROM, in which configuration data is stored (one-way communication - status information will not be accessible). A state machine internal to the ACS8509 device will perform numerous EPROM read operations to read the data out of the EPROM. In EPROM Mode, the ACS8509 takes control of the bus as Master and reads the device set-up from an AMD AM27C64 type EPROM at lowest speed (250ns) after device set-up (system reset). The EPROM access state machine in the up interface sequences the accesses. Figure 23 shows the access timing of the device in EPROM mode.

Further information can be found in the AMD AM27C64 datasheet.

Figure 23 Access Timing in EPROM mode

Table 40 Access Timing in EPROM mode (For use with Figure 23)

Symbol	Parameter	MIN	TYP	MAX
$\mathrm{t}_{\text {acc }}$	Delay CSB $_{\text {falling edge }}$ or A change to AD valid	-	-	920 ns

ACS8509 SETS

ADVANCED COMMUNICATIONS
FINAL
DATASHEET

Package Information

Figure 24 LQFP Package

Table 41100 Pin LQFP Package Dimension Data (for use with Figure 24)

100 LQFP Package Dimensions in mm	D/E	$\begin{gathered} \text { D1/ } \\ \text { E1 } \end{gathered}$	A	A1	A2	e	AN1	AN2	AN3	AN4	R1	R2	L	L1	S	b	b1	c	c1
Min.	-	-	1.40	0.05	1.35	-	11°	11°	0°	0°	0.08	0.08	0.45	-	0.20	0.17	0.17	0.09	0.09
Nom.	16.00	14.00	1.50	0.10	1.40	0.50	12°	12°	-	$3.5{ }^{\circ}$	-	-	0.60	$\begin{aligned} & 1.00 \\ & \text { (ref) } \end{aligned}$	-	0.22	0.20	-	-
Max.	-	-	1.60	0.15	1.45	-	13°	13°	-	7^{0}	-	0.20	0.75	-	-	0.27	0.23	0.20	0.16

Thermal Conditions

The device is rated for full temperature range when this package is used with a 4 layer or more PCB. Copper coverage must exceed 50%. All pins must be soldered to the PCB. Maximum operating temperature must be reduced when the device is used with a PCB with less than these requirements.
Figure 25 Typical 100 Pin LQFP Footprint

Notes: (i) (1) Solderable to this limit.
(ii) Square package - dimensions apply in both X and Y directions.
(iii) Typical example. The user is responsible for ensuring compatibility with PCB manufacturing process, etc.

ACS8509 SETS

Application Information

Figure 26 Simplified Application Schematic

ACS8509 SETS

Abbreviations

APLL Analogue Phase Locked Loop
BITS Building Integrated Timing Supply
DFS
DPLL
DS1
DTO
E1

LOF
LOS
LQFP
LVDS
MTIE

NE

OCXO
PBO
PDH
PECL
PFD
PLL
POR
ppb
ppm
p-p
R/W
rms
RO
RoHS

SDH
SEC
SETS
SONET
SSF
SSU
STM
TDEV
TCXO
UI
WEEE

Digital Frequency Synthesis
Digital Phase Locked Loop
1544 kb/s interface rate
Discrete Time Oscillator
2048 kb/s interface rate
Input - Output
Loss of Frame Alignment
Loss Of Signal
Low profile Quad Flat Pack
Low Voltage Differential Signal
Maximum Time Interval Error
Network Element
Oven Controlled Crystal Oscillator
Phase Build-out
Plesiochronous Digital Hierarchy
Positive Emitter Coupled Logic
Phase and Frequency Detector
Phase Locked Loop
Power-On Reset
parts per billion
parts per million
peak-to-peak
Read/Write
root-mean-square
Read Only
Restrictive Use of Certain Hazardous Substances (directive)
Synchronous Digital Hierarchy
SDH/SONET Equipment Clock
Synchronous Equipment Timing source
Synchronous Optical Network
Synchronization Signal Failure
Synchronization Supply Unit
Synchronous Transport Module
Time Deviation
Temperature Compensated Crystal Oscillator
Unit Interval
Waste Electrical and Electronic Equipment (directive)

References

[1] ANSI T1.101-1999 (1999)
Synchronization Interface Standard
[2] AT \& T 62411 (12/1990)
ACCUNET ${ }^{\circledR}$ T1.5 Service description and Interface Specification
[3] ETSI ETS 300 462-3, (01/1997)
Transmission and Multiplexing (TM); Generic requirements for synchronization networks; Part 3: The control of jitter and wander within synchronization networks
[4] ETSI ETS 300 462-5 (09/1996)
Transmission and Multiplexing (TM); Generic requirements for synchronization networks; Part 5: Timing characteristics of slave clocks suitable for operation in Synchronous Digital Hierarchy (SDH) equipment
[5] IEEE 1149.1 (1990)
Standard Test Access Port and Boundary-Scan Architecture
[6] ITU-T G. 703 (10/1998)
Physical/electrical characteristics of hierarchical digital interfaces
[7] ITU-T G. 736 (03/1993)
Characteristics of a synchronous digital multiplex equipment operating at 2048 kbit/s
[8] ITU-T G. 742 (1988)
Second order digital multiplex equipment operating at 8448 kbit/s, and using positive justification
[9] ITU-T G. 783 (10/2000)
Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks
[10] ITU-T G. 812 (06/1998)
Timing requirements of slave clocks suitable for use as node clocks in synchronization networks
[11] ITU-T G. 813 (08/1996)
Timing characteristics of SDH equipment slave clocks (SEC)
[12] ITU-T G. 822 (11/1988)
Controlled slip rate objectives on an international digital connection
[13] ITU-T G. 823 (03/2000)
The control of jitter and wander within digital networks which are based on the 2048 kbit/s hierarchy

ADVANCED COMMUNICATIONS

[14] ITU-T G. 824 (03/2000)
The control of jitter and wander within digital networks which are based on the 1544 kbit/s hierarchy
[15] ITU-T G. 825 (03/2000)
The control of jitter and wander within digital networks which are based on the Synchronous Digital Hierarchy (SDH)
[16] ITU-T K. 41 (05/1998)
Resistibility of internal interfaces of telecommunication centres to surge overvoltages
[17] Telcordia GR-253-CORE, Issue 3 (09/ 2000) Synchronous Optical Network (SONET) Transport Systems: Common Generic Criteria
[18] Telcordia GR-499-CORE, Issue 2 (12/1998)
Transport Systems Generic Requirements (TSGR) Common requirements
[19] Telcordia GR-1244-CORE, Issue 2 (12/2000) Clocks for the Synchronized Network: Common Generic Criteria

FINAL
DATASHEET

Trademark Acknowledgements

Semtech and the Semtech S logo are registered trademarks of Semtech Corporation.

ACCUNET ${ }^{\circledR}$ is a registered trademark of AT \& T .
AMD is a registered trademark of Advanced Micro Devices, Inc.

Vectron is a registered trademark of Vectron International.

ICT Flexacom is a registered trademark of ICT Electronics.
Intel is a registered trademark of the Intel Corporation.
Motorola is a registered trademark of Motorola, Inc.
Telcordia is a registered trademark of Telcordia Technologies.

Revision Status/History

The Revision Status of the datasheet, as shown in the center of the datasheet header bar, may be DRAFT, PRELIMINARY, or FINAL, and refers to the status of the Device (not the datasheet) within the design cycle. DRAFT status is used when the design is being realized but is not yet physically available, and the datasheet content reflects the intention of the design. The datasheet is raised to PRELIMINARY status when initial prototype devices are physically available, and the datasheet content more accurately represents the realization of the design. The datasheet is only raised to FINAL status after
the device has been fully characterized, and the datasheet content updated with measured, rather than simulated parameter values.

This is a FINAL release (Revision 2.00) of the ACS8509 datasheet. Changes made for this document revision are given in Table 42, together with a brief summary of previous revisions. For specific changes between earlier revisions, refer (where available) to those earlier revisions. Always use the current version of the datasheet.

Table 42 Revision History

Revision	Reference	Description of Changes
1.00 September 2004	All pages	New draft.
2.00 January 2006	All pages	Updated to FINAL and updated to reflect availability of lead(Pb)-free packaged part.

Ordering Information

Table 43 Parts List

Part Number	Description
ACS8509	SETS Synchronous Equipment Timing Source for SONET or SDH Network Elements.
ACS8509T	Lead (Pb) -free packaged version of ACS8509; RoHS and WEEE compliant.

Disclaimers

Life support- This product is not designed or intended for use in life support equipment, devices or systems, or other critical applications. This product is not authorized or warranted by Semtech for such use.

Right to change-Semtech Corporation reserves the right to make changes, without notice, to this product. Customers are advised to obtain the latest version of the relevant information before placing orders.

Compliance to relevant standards- Operation of this device is subject to the User's implementation and design practices. It is the responsibility of the User to ensure equipment using this device is compliant to any relevant standards.

Contacts

For Additional Information, contact the following:

Semtech Corporation Advanced Communications Products

E-mail: sales@semtech.com acsupport@semtech.com
Internet: http://www.semtech.com
USA: $\quad 200$ Flynn Road, Camarillo, CA 93012-8790
Tel: +1 805498 2111, Fax: +1 8054983804
FAR EAST: 11F, No. 46, Lane 11, Kuang Fu North Road, Taipei, R.O.C.
Tel: +886 227483380 Fax: +886 227483390
EUROPE: Semtech Ltd., Units 2 and 3, Park Court, Premier Way, Abbey Park Industrial Estate, Romsey, Hampshire, S051 9DN
Tel: +44 (0)1794527600 Fax: +44 (0)1794527601

ISO9001
CERTIFIED

[^0]: Notes: (i) TTL ports (compatible also with CMOS signals) support clock speeds up to 100 MHz , with the highest spot frequency being 77.76 MHz . The actual spot frequencies are: $2 \mathrm{kHz}, 4 \mathrm{kHz}, 8 \mathrm{kHz}$ (and $\mathrm{N} x 8 \mathrm{kHz}$), 1.544 MHz (SONET)/2.048 MHz (SDH), 6.48 MHz , 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz. SONET or SDH is selected using the SONSDHB pin. When the SONSDHB pin is High SONET is selected, when the SONSDHB pin is Low SDH is selected.
 (ii) Input port SEC4 is set at 12 on the Master SETS IC and 1 on the Slave SETS IC, as default on power up (or PORB). The default setup of Master or Slave SEC4 priority is determined by the MSTSLVB pin.

[^1]: Notes: (i) The frequency acceptance and generation range will be $\pm 4.6 \mathrm{ppm}$ around the required frequency when the external crystal frequency accuracy is within a tolerance of $\pm 4.6 \mathrm{ppm}$.
 (ii) The fundamental acceptance range and generation range is $\pm 9.2 \mathrm{ppm}$ with an exact external crystal frequency of 12.8 MHz . This is the default DPLL range, the range is also programmable from 0 to 80 ppm in 0.08 ppm steps.

[^2]: Notes: (i) Both ACS8509 must build a common priority table so that the Slave ACS8509 can select the same input reference source as the Master ACS8509 if the Master fails (when the Master is OK, the Slave locks to the Master's output).
 (ii) Slave ACS8509 uses common priority table, built before Master ACS8509 failed - priority table can be modified asstatus of the input reference sources changes.
 (iii) Slave ACS8509 outputs must remain in phase with those of Master ACS8509.

