ROHS
Available on commercial versions

11.7 Volt Temperature Compensated Zener Reference Diodes Qualified per MIL-PRF-19500/157

DESCRIPTION

The popular 1N941-1 thru 1N945B-1 series of zero-TC reference diodes provides a selection of 11.7 V nominal voltages and temperature coefficients to as low as $0.0002 \% /{ }^{\circ} \mathrm{C}$ for minimal voltage change with temperature when operated at 7.5 mA . The " B " version of these glass, axial-leaded DO- 35 reference diodes are also available in JAN, JANTX, JANTXV, and JANS military qualifications. Microsemi also offers numerous other Zener reference diode products for a variety of other voltages from 6.2 V to 200 V .

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 1N941 thru 1N945 series.
- Standard reference voltage of $11.7 \mathrm{~V}+/-5 \%$ with tighter reference tolerances of $1 \%, 2 \%$, and 3% available on commercial level only.
- Internal metallurgical bond.
- JAN, JANTX, JANTXV, and JANS qualification per MIL-PRF-19500/157 available for 1N941B-1, 1N943B-1, 1N944B-1, and 1N945B-1.
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Provides minimal voltage changes over a broad temperature range.
- For instrumentation and other circuit designs requiring a stable voltage reference.
- Maximum temperature coefficient selections available from $0.01 \% /{ }^{\circ} \mathrm{C}$ to $0.0005 \% /{ }^{\circ} \mathrm{C}$.
- Flexible axial-lead mounting terminals.
- Non-sensitive to ESD per MIL-STD-750 method 1020.

MAXIMUM RATINGS

Parameters/Test Conditions	Symbol	Value	Unit
Power Dissipation @ current I_{ZM} of 39 mA . ${ }_{(1,2)}=+25{ }^{\circ} \mathrm{C}$ and maximum Junction and Storage Temp P_{D}	500	mW	
Maximum Zener Current	T_{J} and $\mathrm{T}_{\text {STG }}$	-55 to +175	${ }^{\circ} \mathrm{C}$
Solder Temperature @ 10 s	I_{ZM}	39	mA

Notes: 1. For optimum voltage-temperature stability, $\mathrm{I}_{\mathrm{Z}}=7.5 \mathrm{~mA}$ (less than 95 mW in dissipated power). 2. Derate at $3.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Qualified Levels:
JAN, JANTX, JANTXV and JANS (available on some part numbers)

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 656840044
Fax: +353 (0) 656822298
Website:
www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed glass case with axial DO-35 (DO-204AH) package.
- TERMINALS: Tin-lead plated or RoHS compliant matte-tin plating available (on commercial grade only) and solderable per MIL-STD-750, method 2026.
- MARKING: Part number and cathode band.
- POLARITY: Reference diode to be operated with the banded end positive with respect to the opposite end.
- TAPE \& REEL option: Standard per EIA-296. Consult factory for quantities. (Add "TR" suffix to part number.)
- WEIGHT: 0.2 grams.
- See Package Dimensions on the last page.

PART NOMENCLATURE

Applicable to: JAN, JANTX, JANTXV and JANS level 1N941B, 1N943B, 1N944B, and 1N945B only: JAN 1N941 B -1

Applicable to: commercial level 1N941 thru 1N945B:

SYMBOLS \& DEFINITIONS	
Symbol	Definition
I_{R}	Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.
$\mathrm{I}_{\mathrm{Z},} \mathrm{I}_{\mathrm{ZT}}, \mathrm{I}_{\mathrm{ZK}}$	Regulator Current: The dc regulator current (I_{Z}), at a specified test point (I_{ZT}), near breakdown knee (I_{ZK}).
I_{ZM}	Maximum Regulator (Zener) Current: The maximum rated dc current for the specified power rating.
V_{Z}	Zener Voltage: The Zener voltage the device will exhibit at a specified current $\left(\mathrm{I}_{\mathrm{Z}}\right)$ in its breakdown region.
V_{ZT}	Zener Voltage Temperature.
Z_{ZT} or Z_{ZK}	Dynamic Impedance: The small signal impedance of the diode when biased to operate in its breakdown region at a specified rms current modulation (typically 10% of I_{ZT} or $\left.\mathrm{I}_{\mathrm{ZK}}\right)$ and superimposed on I_{ZT} or I_{ZK} respectively.

ELECTRICAL CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ unless otherwise specified

JEDEC TYPE NUMBER (Note 4)	ZENER VOLTAGE V_{Z} @ I_{ZT} (Note 3)	ZENER TEST CURRENT I_{ZT}	MAXIMUM ZENER IMPEDANCE $Z_{\text {ZT }} @ I_{\text {zt }}$ (Note 1)	MAXIMUM REVERSE CURRENT $I_{R} @ 8 \mathrm{~V}$	VOLTAGE TEMPERATURE STABILITY $\Delta V_{z T}$ MAXIMUM (Note $2 \& 3$)	TEMPERATURE RANGE	EFFECTIVE TEMPERATURE COEFFICIENT α_{vz}
	Volts	mA	Ohms	$\mu \mathrm{A}$	mV	${ }^{\circ} \mathrm{C}$	\% $/{ }^{\circ} \mathrm{C}$
1N941-1	11.12-12.28	7.5	30	15	88	0 to +75	0.01
1N941A-1	11.12-12.28	7.5	30	15	181	-55 to +100	0.01
1N941B-1	11.12-12.28	7.5	30	15	239	-55 to +150	0.01
1N942-1	11.12-12.28	7.5	30	15	44	0 to +75	0.005
1N942A-1	11.12-12.28	7.5	30	15	90	-55 to +100	0.005
1N942B-1	11.12-12.28	7.5	30	15	120	-55 to +150	0.005
1N943-1	11.12-12.28	7.5	30	15	18	0 to +75	0.002
1N943A-1	11.12-12.28	7.5	30	15	36	-55 to +100	0.002
1N943B-1	11.12-12.28	7.5	30	15	47	-55 to +150	0.002
1N944-1	11.12-12.28	7.5	30	15	9	0 to +75	0.001
1N944A-1	11.12-12.28	7.5	30	15	18	-55 to +100	0.001
1N944B-1	11.12-12.28	7.5	30	15	24	-55 to +150	0.001
1N945-1	11.12-12.28	7.5	30	15	4	0 to +75	0.0005
1N945A-1	11.12-12.28	7.5	30	15	9	-55 to +100	0.0005
1N945B-1	11.12-12.28	7.5	30	15	12	-55 to +150	0.0005

*JEDEC Registered Data.

NOTES:

1. Measured by superimposing 0.75 mA ac rms on 7.5 mA dc @ $25^{\circ} \mathrm{C}$.
2. The maximum allowable change observed over the entire temperature range i.e., the diode voltage will not exceed the specified mV change at any discrete temperature between the established limits.
3. Voltage measurements to be performed 15 seconds after application of dc current.
4. The 1N941B-1, 1N943B-1, 1N944B-1, and 1N945B-1 only are military qualified to MIL-PRF-19500/157 up to the JANS level.

FIGURE 1

TYPICAL CHANGE OF TEMPERATURE COEFFICIENT WITH CHANGE IN OPERATING CURRENT

FIGURE 2
TYPICAL CHANGE OF ZENER VOLTAGE WITH CHANGE IN OPERATING CURRENT

The curve shown in Figure 1 is typical of the diode series and greatly simplifies the estimation of the Temperature Coefficient (TC) when the diode is operated at currents other than 7.5 mA .

EXAMPLE: A diode in this series is operated at a current of 7.5 mA and has specified Temperature Coefficient (TC) limits of $+/-0.002 \% /{ }^{\circ}$ C. To obtain the typical Temperature Coefficient limits for this same diode operated at a current of 6.0 mA , the new TC limits $\left(\%{ }^{\circ} \mathrm{C}\right)$ can be estimated using the graph in Figure 1.

At a test current of 6.0 mA the change in Temperature Coefficient (TC) is approximately $0.0009 \%{ }^{\circ}{ }^{\circ} \mathrm{C}$. The algebraic sum of $+/-0.002 \%^{\circ} \mathrm{C}$ and $-0.0009 \%{ }^{\circ} \mathrm{C}$ gives the new estimated limits of $+0.0011 \% / 0 C$ and $-0.0029 \% / o C$.

This curve in Figure 2 illustrates the change of diode voltage arising from the effect of impedance. It is in effect, an exploded view of the Zener operating region of the $I-V$ characteristic.

In conjunction with Figure 1, this curve can be used to estimate total voltage regulation under conditions of both varying temperature and current.

FIGURE 3
POWER DERATING CURVE

FIGURE 4
TYPICAL ZENER IMPEDANCE VS. OPERATING CURRENT

PACKAGE DIMENSIONS

Symbol	Dimensions				Notes
	Inch		Millimeters		
	Min	Max	Min	Max	
BD	0.600	0.107	1.52	2.72	3
BL	0.120	0.300	3.05	7.62	3
LD	0.018	0.023	0.46	0.58	
LL	1.000	1.500	25.40	38.10	
LL $_{\mathbf{1}}$		0.050		1.27	4

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Package contour optional within BD and length BL. Heat slugs, if any, shall be included within this cylinder but shall not be subject to minimum limit of BD.
4. Within this zone, lead diameter may vary to allow for lead finishes and irregularities, other than heat slugs.
5. In accordance with ASME Y14.5M, diameters are equivalent to ΦX symbology.
